scholarly journals Oncometabolite D-2-Hydroxyglurate Directly Induces Epithelial-Mesenchymal Transition and is Associated with Distant Metastasis in Colorectal Cancer

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Hugh Colvin ◽  
Naohiro Nishida ◽  
Masamitsu Konno ◽  
Naotsugu Haraguchi ◽  
Hidekazu Takahashi ◽  
...  
2019 ◽  
Author(s):  
Peng-Sheng Lai ◽  
Wei-Min Chang ◽  
Ying-Yin Chen ◽  
Yi-Feng Lin ◽  
Hui-Fen Liao ◽  
...  

Abstract Background: A number of microRNAs (miRNAs) have been demonstrated to be associated with the diagnosis, progression and prognosis of colorectal cancer (CRC). However, the function of miRNA-762 (miR-762) in CRC remains unclear, and the molecular mechanisms underlying the effects of miR‑762 in CRC require further investigation. Methods: The circulating miRNAs from BALB/c mice with CRC CT26 cell implantation were assayed by microarray. Then, miR-762 mimic and inhibitor were transfected to CT26 cells for analysis of cell viability, invasion, and epithelial-mesenchymal transition (EMT), cell cycle, and regulatory molecule expression. Human subjects were included for comparison the circulating miR-762 levels in CRC patients and control donors, as well as the patients with and without distant metastasis. Results: The screening for miRNA levels in mice with CRC cell implantation indicated that plasma miR-762 was upregulated. Transfection of miR-762 mimic to CT26 cells increased cell viability, invasion, and EMT, whereas transfection of miR-762 inhibitor decreased the above abilities. Western blot analysis showed that miR-762 mimic transfection upregulated the expression of Wnt-1 and b-catenin, as well as increased the nuclear translocation of b-catenin. Further analysis showed that serum miR-762 levels in CRC patients were higher than in control donors. Among the CRC patients (n = 20), six patients with distant metastasis showed higher serum miR-762 levels than the patients without distant metastasis. Conclusions: Circulating miR-762 could promote CRC disease development and progression through the Wnt/b-catenin signaling. miR-762 might be used as a biomarker for CRC diagnosis and targeted therapy.


2020 ◽  
Author(s):  
Zhenxian Xiang ◽  
Guoquan Huang ◽  
Haitao Wu ◽  
Qiuming He ◽  
Chaogang Yang ◽  
...  

Abstract Background: Circulating tumor cells are important precursor of colorectal cancer metastasis, which attributes to the main cause of cancer-related death. The ability to adopt epithelial-mesenchymal transition (EMT) process facilitates CTCs generation, thereby overcoming metastatic bottlenecks and realizing distant metastasis. However, the potential molecular mechanism of CRC EMT remains largely unknown.Methods: RT-qPCR, immunohistochemical staining, and western blot were used to detect the expression of mRNA and protein in CRC. Loss- and gain-of-function approaches were performed to investigate the effect of SNHG16 on CRC cell phenotypes. Function assays, including wounding healing, transwell assay, and clone formation were used to assess the effect of SNHG16 on tumor biological behavior. Then, RNA immunoprecipitation, Chromatin Immunoprecipitation, Co-Immunoprecipitation, GST-pull down, biotin-labeled miR-195-5p pull down, and dual-luciferase assay were performed to uncover the underlying mechanism for molecular interaction. Finally, CRC nude mice xenograft model experiment was performed to evaluate the influence of SNHG16 on tumor progression in vivo Results: Compared with normal tissue and cell line, SNHG16 was significantly upregulated in CRC. Clinical investigation revealed that SNHG16 high expression was correlated with advanced TNM stage, distant metastasis, and poor prognosis of cancer patients. According to Loss- and gain-of-function experiment, SNHG16 could promote CRC proliferation, migration, invasion, EMT, mesenchymal-type CTCs (MCTCs) generation, and liver metastasis through YAP1 in vitro and in vivo. Mechanistic research indicates that, SNHG16 could act as miRNA sponge to sequester miR-195-5p on Ago2, thereby protecting YAP1 from repression and facilitating CRC liver metastasis and tumor progression. Moreover, YAP1 could combine with TEA Domain Transcription Factor 1 (TEAD1) to form a YAP1/TEAD1 complex, which could in turn bind to the promoter of SNHG16 and regulate its transcription. In addition, both of YAP1 and TEAD1 are indispensable during this process. Finally, we demonstrated that YAP1 significantly promoted the tumor progression, and SNHG16 could rescue the effect of YAP1 on tumor progressionConclusion: Herein, we clarified a hitherto unexplored positive feedback loop between SNHG16 and YAP1/TEAD1. These findings provided new sights in CRC liver metastasis, and it may act as a potential candidate in the treatment of CRC.


2020 ◽  
Author(s):  
Peng-Sheng Lai ◽  
Wei-Min Chang ◽  
Ying-Yin Chen ◽  
Yi-Feng Lin ◽  
Hui-Fen Liao ◽  
...  

ABSTRACTBackgroundA number of microRNAs (miRNAs) have been demonstrated to be correlated with the diagnosis, progression and prognosis of colorectal cancer (CRC). However, the key miRNAs and the associated signaling pathways that regulate the growth and metastasis of CRC remain unclear.MethodsThe circulating miRNAs from BALB/c mice with CRC CT26 cell implantation were assayed by microarray. Then, mmu-miR-762 mimic and inhibitor were transfected to CT26 cells for analysis of cell viability, invasion, and epithelial-mesenchymal transition (EMT), cell cycle, and regulatory molecule expression. Human subjects were included for comparison the circulating has-miR-762 levels in CRC patients and control donors, as well as the patients with and without distant metastasis.ResultsThe miRNA levels in mice with CRC cell implantation indicated that plasma mmu-miR-762 was upregulated. Transfection of mmu-miR-762 mimic to CT26 cells increased cell viability, invasion, and EMT, whereas transfection of mmu-miR-762 inhibitor decreased the above abilities. Cells treated with high-concentration mmu-miR-762 inhibitor induced cell cycle arrest at G0/G1 phase. Western blot analysis showed that mmu-miR-762 mimic transfection upregulated the expression of Wnt-1 and β-catenin. Further analysis was performed to demonstrate the correlation of has-miR-762 with CRC patients. The results showed that serum has-miR-762 levels in CRC patients were higher than in control donors. Among the CRC patients, patients with distant metastasis showed higher serum has-miR-762 levels than patients without distant metastasis.ConclusionsThe present study demonstrated that circulating miR-762 might be a biomarker with upregulation of CRC cell growth and invasion through the Wnt/β-catenin signaling.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 75
Author(s):  
Paula I. Escalante ◽  
Luis A. Quiñones ◽  
Héctor R. Contreras

The FOLFOX scheme, based on the association of 5-fluorouracil and oxaliplatin, is the most frequently indicated chemotherapy scheme for patients diagnosed with metastatic colorectal cancer. Nevertheless, development of chemoresistance is one of the major challenges associated with this disease. It has been reported that epithelial-mesenchymal transition (EMT) is implicated in microRNA-driven modulation of tumor cells response to 5-fluorouracil and oxaliplatin. Moreover, from pharmacogenomic research, it is known that overexpression of genes encoding dihydropyrimidine dehydrogenase (DPYD), thymidylate synthase (TYMS), methylenetetrahydrofolate reductase (MTHFR), the DNA repair enzymes ERCC1, ERCC2, and XRCC1, and the phase 2 enzyme GSTP1 impair the response to FOLFOX. It has been observed that EMT is associated with overexpression of DPYD, TYMS, ERCC1, and GSTP1. In this review, we investigated the role of miRNAs as EMT promotors in tumor cells, and its potential effect on the upregulation of DPYD, TYMS, MTHFR, ERCC1, ERCC2, XRCC1, and GSTP1 expression, which would lead to resistance of CRC tumor cells to 5-fluorouracil and oxaliplatin. This constitutes a potential mechanism of epigenetic regulation involved in late-onset of acquired resistance in mCRC patients under FOLFOX chemotherapy. Expression of these biomarker microRNAs could serve as tools for personalized medicine, and as potential therapeutic targets in the future.


2021 ◽  
pp. 153323
Author(s):  
Ying Feng ◽  
Zhaoting Yang ◽  
Chengye Zhang ◽  
Nan Che ◽  
Xingzhe Liu ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1833
Author(s):  
Tsai-Tsen Liao ◽  
Wei-Chung Cheng ◽  
Chih-Yung Yang ◽  
Yin-Quan Chen ◽  
Shu-Han Su ◽  
...  

Cell migration is critical for regional dissemination and distal metastasis of cancer cells, which remain the major causes of poor prognosis and death in patients with colorectal cancer (CRC). Although cytoskeletal dynamics and cellular deformability contribute to the migration of cancer cells and metastasis, the mechanisms governing the migratory ability of cancer stem cells (CSCs), a nongenetic source of tumor heterogeneity, are unclear. Here, we expanded colorectal CSCs (CRCSCs) as colonospheres and showed that CRCSCs exhibited higher cell motility in transwell migration assays and 3D invasion assays and greater deformability in particle tracking microrheology than did their parental CRC cells. Mechanistically, in CRCSCs, microRNA-210-3p (miR-210) targeted stathmin1 (STMN1), which is known for inducing microtubule destabilization, to decrease cell elasticity in order to facilitate cell motility without affecting the epithelial–mesenchymal transition (EMT) status. Clinically, the miR-210-STMN1 axis was activated in CRC patients with liver metastasis and correlated with a worse clinical outcome. This study elucidates a miRNA-oriented mechanism regulating the deformability of CRCSCs beyond the EMT process.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 801
Author(s):  
Joyce Y. Buikhuisen ◽  
Patricia M. Gomez Barila ◽  
Arezo Torang ◽  
Daniëlle Dekker ◽  
Joan H. de Jong ◽  
...  

Colorectal cancer (CRC) is a heterogeneous disease that can currently be subdivided into four distinct consensus molecular subtypes (CMS) based on gene expression profiling. The CMS4 subtype is marked by high expression of mesenchymal genes and is associated with a worse overall prognosis compared to other CMSs. Importantly, this subtype responds poorly to the standard therapies currently used to treat CRC. We set out to explore what regulatory signalling networks underlie the CMS4 phenotype of cancer cells, specifically, by analysing which kinases were more highly expressed in this subtype compared to others. We found AKT3 to be expressed in the cancer cell epithelium of CRC specimens, patient derived xenograft (PDX) models and in (primary) cell cultures representing CMS4. Importantly, chemical inhibition or knockout of this gene hampers outgrowth of this subtype, as AKT3 controls expression of the cell cycle regulator p27KIP1. Furthermore, high AKT3 expression was associated with high expression of epithelial-mesenchymal transition (EMT) genes, and this observation could be expanded to cell lines representing other carcinoma types. More importantly, this association allowed for the identification of CRC patients with a high propensity to metastasise and an associated poor prognosis. High AKT3 expression in the tumour epithelial compartment may thus be used as a surrogate marker for EMT and may allow for a selection of CRC patients that could benefit from AKT3-targeted therapy.


Sign in / Sign up

Export Citation Format

Share Document