scholarly journals Chemical formation of hybrid di-nitrogen calls fungal codenitrification into question

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Rebecca L. Phillips ◽  
Bongkeun Song ◽  
Andrew M. S. McMillan ◽  
Gwen Grelet ◽  
Bevan S. Weir ◽  
...  

Abstract Removal of excess nitrogen (N) can best be achieved through denitrification processes that transform N in water and terrestrial ecosystems to di-nitrogen (N2) gas. The greenhouse gas nitrous oxide (N2O) is considered an intermediate or end-product in denitrification pathways. Both abiotic and biotic denitrification processes use a single N source to form N2O. However, N2 can be formed from two distinct N sources (known as hybrid N2) through biologically mediated processes of anammox and codenitrification. We questioned if hybrid N2 produced during fungal incubation at neutral pH could be attributed to abiotic nitrosation and if N2O was consumed during N2 formation. Experiments with gas chromatography indicated N2 was formed in the presence of live and dead fungi and in the absence of fungi, while N2O steadily increased. We used isotope pairing techniques and confirmed abiotic production of hybrid N2 under both anoxic and 20% O2 atmosphere conditions. Our findings question the assumptions that (1) N2O is an intermediate required for N2 formation, (2) production of N2 and N2O requires anaerobiosis, and (3) hybrid N2 is evidence of codenitrification and/or anammox. The N cycle framework should include abiotic production of N2.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


Soil Research ◽  
2017 ◽  
Vol 55 (3) ◽  
pp. 201 ◽  
Author(s):  
A. R. Melland ◽  
D. L. Antille ◽  
Y. P. Dang

Occasional strategic tillage (ST) of long-term no-tillage (NT) soil to help control weeds may increase the risk of water, erosion and nutrient losses in runoff and of greenhouse gas (GHG) emissions compared with NT soil. The present study examined the short-term effect of ST on runoff and GHG emissions in NT soils under controlled-traffic farming regimes. A rainfall simulator was used to generate runoff from heavy rainfall (70mmh–1) on small plots of NT and ST on a Vertosol, Dermosol and Sodosol. Nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) fluxes from the Vertosol and Sodosol were measured before and after the rain using passive chambers. On the Sodosol and Dermosol there was 30% and 70% more runoff, respectively, from ST plots than from NT plots, however, volumes were similar between tillage treatments on the Vertosol. Erosion was highest after ST on the Sodosol (8.3tha–1 suspended sediment) and there were no treatment differences on the other soils. Total nitrogen (N) loads in runoff followed a similar pattern, with 10.2kgha–1 in runoff from the ST treatment on the Sodosol. Total phosphorus loads were higher after ST than NT on both the Sodosol (3.1 and 0.9kgha–1, respectively) and the Dermosol (1.0 and 0.3kgha–1, respectively). Dissolved nutrient forms comprised less than 13% of total losses. Nitrous oxide emissions were low from both NT and ST in these low-input systems. However, ST decreased CH4 absorption from both soils and almost doubled CO2 emissions from the Sodosol. Strategic tillage may increase the susceptibility of Sodosols and Dermosols to water, sediment and nutrient losses in runoff after heavy rainfall. The trade-offs between weed control, erosion and GHG emissions should be considered as part of any tillage strategy.


2010 ◽  
Vol 34 (5) ◽  
pp. 1677-1684 ◽  
Author(s):  
Sandra Mara Vieira Fontoura ◽  
Cimélio Bayer

Ammonia (NH3) volatilization can reduce the efficiency of urea applied to the surface of no-till (NT) soils. Thus, the objectives of this study were to evaluate the magnitude of NH3 losses from surface-applied urea and to determine if this loss justifies the urea incorporation in soil or its substitution for other N sources under the subtropical climatic conditions of South-Central region of Paraná State, Brazil. The experiment, performed over four harvesting seasons in a clayey Hapludox followed a randomized block design with four replicates. A single dose of N (150 kg ha-1) to V5 growth stage of corn cultivated under NT system was applied and seven treatments were evaluated, including surface-applied urea, ammonium sulfate, ammonium nitrate, urea with urease inhibitor, controlled-release N source, a liquid N source, incorporated urea, and a control treatment with no N application. Ammonia volatilization was evaluated for 20 days after N application using a semi-open static system. The average cumulative NH3 loss due to the superficial application of urea was low (12.5 % of the applied N) compared to the losses observed in warmer regions of Southeastern Brazil (greater than 50 %). The greatest NH3 losses were observed in dry years (up to 25.4 % of the applied N), and losses decreased exponentially as the amount of rainfall after N application increased. Incorporated urea and alternative N sources, with the exception of controlled-release N source, decreased NH3 volatilization in comparison with surface-applied urea. Urea incorporation is advantageous for the reduction of NH3 volatilization; however, other aspects as its low operating efficiency should be considered before this practice is adopted. In the South-Central region of Paraná, the low NH3 losses from the surface-applied urea in NT system due to wet springs and mild temperatures do not justify its replacement for other N sources.


2016 ◽  
Author(s):  
Malte Winther ◽  
David Balslev-Harder ◽  
Søren Christensen ◽  
Anders Priemé ◽  
Bo Elberling ◽  
...  

Abstract. Nitrous oxide (N2O) is an important and strong greenhouse gas in the atmosphere and part of a feed-back loop with climate. N2O is produced by microbes during nitrification and denitrification in terrestrial and aquatic ecosystems. The main sinks for N2O are turnover by denitrification and photolysis and photo-oxidation in the stratosphere. The position of the isotope 15N in the linear N = N = O molecule can be distinguished between the central or terminal position (isotopomers of N2O). It has been demonstrated that nitrifying and denitrifying microbes have a different relative preference for the terminal and central position. Therefore, measurements of the site preference in N2O can be used to determine the source of N2O i.e. nitrification or denitrification. Recent instrument development allows for continuous (on the order of days) position dependent δ15N measurements at N2O concentrations relevant for studies of atmospheric chemistry. We present results from continuous incubation experiments with denitrifying bacteria, Pseudomonas fluorescens (producing and reducing N2O) and P. chlororaphis (only producing N2O). The continuous position dependent measurements reveal the transient pattern (KNO3 to N2O and N2, respectively), which can be compared to previous reported site preference (SP) values. We find bulk isotope effects of −5.5 ‰ ± 0.9 for P. chlororaphis. For P. fluorescens, the bulk isotope effect during production of N2O is −50.4 ‰ ± 9.3 and 8.5 ‰ ± 3.7 during N2O reduction. The values for P. fluorescens are in line with earlier findings, whereas the values for P. chlororaphis are larger than previously published δ15Nbulk measurements from production. The calculations of the SP isotope effect from the measurements of P. chlororaphis result in values of −6.6 ‰ ± 1.8. For P. fluorescens, the calculations results in SP values of −5.7 ‰ ± 5.6 during production of N2O and 2.3 ‰ ± 3.2 during reduction of N2O. In summary, we implemented continuous measurements of N2O isotopomers during incubation of denitrifying bacteria and believe that similar experiments will lead to a better understanding of denitrifying bacteria and N2O turnover in soils and sediments and ultimately hands-on knowledge on the biotic mechanisms behind greenhouse gas exchange of the Globe.


2008 ◽  
Vol 5 (1) ◽  
pp. 213-242 ◽  
Author(s):  
S. Glatzel ◽  
I. Forbrich ◽  
C. Krüger ◽  
S. Lemke ◽  
G. Gerold

Abstract. In Central Europe, most bogs have a history of drainage and many of them are currently being restored. Success of restoration as well as greenhouse gas exchange of these bogs is influenced by environmental stress factors as drought and atmospheric nitrogen deposition. We determined the methane and nitrous oxide exchange of sites in the strongly decomposed center and less decomposed edge of the Pietzmoor bog in NW Germany in 2004. Also, we examined the methane and nitrous oxide exchange of mesocosms from the center and edge before, during, and following a drainage experiment as well as carbon dioxide release from disturbed unfertilized and nitrogen fertilized surface peat. In the field, methane fluxes ranged from 0 to 3.8 mg m−2 h−1 and were highest from hollows. Field nitrous oxide fluxes ranged from 0 to 574 μg m−2 h−1 and were elevated at the edge. A large Eriophorum vaginatum tussock showed decreasing nitrous oxide release as the season progressed. Drainage of mesocosms decreased methane release to 0, even during rewetting. There was a tendency for a decrease of nitrous oxide release during drainage and for an increase in nitrous oxide release during rewetting. Nitrogen fertilization did not increase decomposition of surface peat. Our examinations suggest a competition between vascular vegetation and denitrifiers for excess nitrogen. We also provide evidence that the von Post humification index can be used to explain greenhouse gas release from bogs, if the role of vascular vegetation is also considered. An assessment of the greenhouse gas release from nitrogen saturated restoring bogs needs to take into account elevated release from fresh Sphagnum peat as well as from sedges growing on decomposed peat. Given the high atmospheric nitrogen deposition, restoration will not be able to achieve an oligotrophic ecosystem in the short term.


Author(s):  
Syakira Afiqah Suffian ◽  
Atiah Abdullah Sidek ◽  
Toshihiko Matsuto ◽  
Muataz Hazza Al Hazza ◽  
Hazlina Md Yusof ◽  
...  

The aim of this research was to evaluate the level of greenhouse gas emission from broiler chicken farming industry in Malaysia. In order to achieve that, Life Cycle Assessment method was chosen as a framework to complete the task. A case study was conducted at a broiler chicken farm to gather the data and information related to the broiler chicken production. Cradle-to-gate assessment including distribution stage was conducted based on the ISO14040/1044 guidelines. Inventory data for this case study was gathered in collaboration with one of the selected case study broiler chicken farm company. Greenhouse gas emission that consists of several most affected gases such as carbon dioxide, methane and nitrous oxide was studied. Result shows that the highest carbon dioxide emission came from manure, which accounted for 1,665,342 kg CO2 equivalent per total broilers while the highest methane emission came from feed, which accounted for 126,207.84 g CH4 equivalent per total broilers. For nitrous oxide emission, the highest values came from bedding which accounted for 20,316.87 g N2O equivalent per total broilers in the commercial modern broiler chicken farm. In this case study, it can be concluded that manure gives the most prominent effect to the greenhouse gas emission followed by feed and bedding materials. 


Author(s):  
Natasha Doyle ◽  
◽  
Philiswa Mbandlwa ◽  
Sinead Leahy ◽  
Graeme Attwood ◽  
...  

This chapter aims to outline the strategy of using feed supplements for the reduction of greenhouse gas emissions (GHG) in ruminants, including methane (CH4), carbon dioxide and nitrous oxide, given that feed intake is an important variable in predicting these emissions. Focus will be given to direct-fed microbials, a term reserved for live microbes which can be supplemented to feed to elicit a beneficial response. The viability of such methods will also be analysed for their use in large scale on-farm operations.


2012 ◽  
Vol 9 (8) ◽  
pp. 3357-3380 ◽  
Author(s):  
S. Luyssaert ◽  
G. Abril ◽  
R. Andres ◽  
D. Bastviken ◽  
V. Bellassen ◽  
...  

Abstract. Globally, terrestrial ecosystems have absorbed about 30% of anthropogenic greenhouse gas emissions over the period 2000–2007 and inter-hemispheric gradients indicate that a significant fraction of terrestrial carbon sequestration must be north of the Equator. We present a compilation of the CO2, CO, CH4 and N2O balances of Europe following a dual constraint approach in which (1) a land-based balance derived mainly from ecosystem carbon inventories and (2) a land-based balance derived from flux measurements are compared to (3) the atmospheric data-based balance derived from inversions constrained by measurements of atmospheric GHG (greenhouse gas) concentrations. Good agreement between the GHG balances based on fluxes (1294 ± 545 Tg C in CO2-eq yr−1), inventories (1299 ± 200 Tg C in CO2-eq yr−1) and inversions (1210 ± 405 Tg C in CO2-eq yr−1) increases our confidence that the processes underlying the European GHG budget are well understood and reasonably sampled. However, the uncertainty remains large and largely lacks formal estimates. Given that European net land to atmosphere exchanges are determined by a few dominant fluxes, the uncertainty of these key components needs to be formally estimated before efforts could be made to reduce the overall uncertainty. The net land-to-atmosphere flux is a net source for CO2, CO, CH4 and N2O, because the anthropogenic emissions by far exceed the biogenic sink strength. The dual-constraint approach confirmed that the European biogenic sink removes as much as 205 ± 72 Tg C yr−1 from fossil fuel burning from the atmosphere. However, This C is being sequestered in both terrestrial and inland aquatic ecosystems. If the C-cost for ecosystem management is taken into account, the net uptake of ecosystems is estimated to decrease by 45% but still indicates substantial C-sequestration. However, when the balance is extended from CO2 towards the main GHGs, C-uptake by terrestrial and aquatic ecosystems is offset by emissions of non-CO2 GHGs. As such, the European ecosystems are unlikely to contribute to mitigating the effects of climate change.


Sign in / Sign up

Export Citation Format

Share Document