scholarly journals Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yanlong Guo ◽  
Xin Li ◽  
Zefang Zhao ◽  
Haiyan Wei ◽  
Bei Gao ◽  
...  
PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7642
Author(s):  
Jaime A. Cursach ◽  
Aldo Arriagada ◽  
Jaime R. Rau ◽  
Jaime Ojeda ◽  
Gustavo Bizama ◽  
...  

Background The effects of global climate change on species inhabiting marine ecosystems are of growing concern, especially for endemic species that are sensitive due to restricted distribution. One method employed for determining the effects of climate change on the distribution of these organisms is species distribution modeling. Methods We generated a model to evaluate the potential geographic distribution and breeding distribution of the Peruvian pelican (Pelecanus thagus). Based on maximum entropy modeling (MaxEnt), we identified the environmental factors that currently affect its geographic distribution and breeding. Then we predicted its future distribution range under two climate change scenarios: moderate (rcp 2.6) and severe (rcp 8.5). Results The mean daytime temperature range and marine primary productivity explain the current potential distribution and breeding of the pelican. Under the future climate change scenarios, the spatial distribution of the pelican is predicted to slightly change. While the breeding distribution of the pelican can benefit in the moderate scenario, it is predicted to decrease (near −20 %) in the severe scenario. Discussion The current potential geographic distribution of the pelican is influenced to a large extent by thermal conditions and primary productivity. Under the moderate scenario, a slight increase in pelican breeding distribution is predicted. This increase in habitable area is explained by the climatic conditions in southern Chile, and those climatic conditions will likely be similar to the current conditions of the central coast of Chile. We predict that the coasts of southern Chile will constitute an important refuge for the conservation of the Peruvian pelican under future climate change scenarios.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 689
Author(s):  
Gisel Garza ◽  
Armida Rivera ◽  
Crystian Sadiel Venegas Barrera ◽  
José Guadalupe Martinez-Ávalos ◽  
Jon Dale ◽  
...  

Walker’s Manihot, Manihot walkerae, is an endangered plant that is endemic to the Tamaulipan thornscrub ecoregion of extreme southern Texas and northeastern Mexico. M. walkerae populations are highly fragmented and are found on both protected public lands and private property. Habitat loss and competition by invasive species are the most detrimental threats for M. walkerae; however, the effect of climate change on M. walkerae’s geographic distribution remains unexplored and could result in further range restrictions. Our objectives are to evaluate the potential effects of climate change on the distribution of M. walkerae and assess the usefulness of natural protected areas in future conservation. We predict current and future geographic distribution for M. walkerae (years 2050 and 2070) using three different general circulation models (CM3, CMIP5, and HADGEM) and two climate change scenarios (RCP 4.5 and 8.5). A total of nineteen spatially rarefied occurrences for M. walkerae and ten non-highly correlated bioclimatic variables were inputted to the maximum entropy algorithm (MaxEnt) to produce twenty replicates per scenario. The area under the curve (AUC) value for the consensus model was higher than 0.90 and the partial ROC value was higher than 1.80, indicating a high predictive ability. The potential reduction in geographic distribution for M. walkerae by the effect of climate change was variable throughout the models, but collectively they predict a restriction in distribution. The most severe reductions were 9% for the year 2050 with the CM3 model at an 8.5 RCP, and 14% for the year 2070 with the CMIP5 model at the 4.5 RCP. The future geographic distribution of M. walkerae was overlapped with protected lands in the U.S. and Mexico in order to identify areas that could be suitable for future conservation efforts. In the U.S. there are several protected areas that are potentially suitable for M. walkerae, whereas in Mexico no protected areas exist within M. walkerae suitable habitat.


2017 ◽  
Vol 4 (3) ◽  
Author(s):  
Heliot Zarza ◽  
Enrique Martínez-Meyer ◽  
Gerardo Suzán ◽  
Gerardo Ceballos

Veterinaria México OA ISSN: 2448-6760Cite this as:Zarza H, Martínez-Meyer E, Suzán G, Ceballos G. Geographic distribution of Desmodus rotundus in Mexico under current and future climate change scenarios: Implications for bovine paralytic rabies infection. Veterinaria México OA. 2017;4(3). doi: 10.21753/vmoa.4.3.390.Climate change may modify the spatial distribution of reservoirs hosting emerging and reemerging zoonotic pathogens, and forecasting these changes is essential for developing prevention and adaptation strategies. The most important reservoir of bovine paralytic rabies in tropical countries, is the vampire bat (Desmodus rotundus). In Mexico, the cattle industry loses more than $2.6 million US dollar, annually to this infectious disease. Therefore, we predicted the change in the distribution of D. rotundus due to future climate change scenarios, and examined the likely effect that the change in its distribution will have on paralytic rabies infections in Mexico. We used the correlative maximum entropy based model algorithm to predict the potential distribution of D. rotundus. Consistent with the literature, our results showed that temperature was the variable most highly associated with the current distribution of vampire bats. The highest concentration of bovine rabies was in Central and Southeastern Mexico, regions that also have high cattle population densities. Furthermore, our climatic envelope models predicted that by 2050–2070, D. rotundus will lose 20 % of its current distribution while the northern and central regions of Mexico will become suitable habitats for D. rotundus. Together, our study provides an advanced notice of the likely change in spatial patterns of D. rotundus and bovine paralytic rabies, and presents an important tool for strengthening the National Epidemiological Surveillance System and Monitoring programmes, useful for establishing holistic, long-term strategies to control this disease in Mexico.Figure 4. Modelled suitability for future distribution of Desmodus rotundus according to Global Climate Model GFDL-CM3 for two time periods (2050 and 2070), and two Representative Concentration Pathways (RCP 4.5 and 8.5). Left-hand column shows suitability values, with blue indicating more suitable conditions.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 434 ◽  
Author(s):  
Xing-zhuang Ye ◽  
Guang-hua Zhao ◽  
Ming-zhu Zhang ◽  
Xin-yue Cui ◽  
Hui-hua Fan ◽  
...  

Semiliquidambar cathayensis is a special and endangered plant in China, used for traditional Chinese medicine and in landscape applications. Predicting the impact of climate change on the distribution of S. cathayensis is crucial for its protection and the sustainable use of resources. We used the maximum entropy (MaxEnt) model optimized by the ENMeval data packet to analyze the potential geographic distribution changes of S. cathayensis in 12 provinces of Southern China for the different periods since the last interglacial period (LIG, 120–140 ka). Considering the potential geographic distribution changes in the province, and based on the two climate scenarios of Representative Concentration Pathways (RCP) 2.6 and RCP 8.5, the distribution range of S. cathayensis was analyzed and we predicted the range for the 2050s (average for 2041–2060) and 2070s (average for 2061–2080). The area under AUC (Area under the receiver operating characteristic (ROC) curve) is 0.9388 under these parameters, which indicates that the model is very accurate. We speculate that the glacial period refugia were the Nanling and Wuyi Mountains for S. cathayensis, and central and Western Fujian and Taiwan are likely to be the future climate refugia. In the mid-Holocene (MH, 6 ka), the growth habitat was 32.41% larger than the modern habitat; in the 2050s and 2070s (except RCP2.6–2070s), the growth habitat will shrink to varying degrees, so efforts to support its in situ and ex situ conservation are urgently needed. The jackknife test showed that the main factors affecting the geographical distribution of S. cathayensis were annual precipitation, precipitation of the wettest month, and precipitation of the driest month. The annual precipitation may be the key factor restricting the northward distribution of S. cathayensis. In general, the centroid of the distribution of S. cathayensis will move northward. The centroid of the adaptive habitats will move northward with the highest degree of climate abnormality. We think that Hainan Island is the most likely origin of S. cathayensis. These findings provide a theoretical basis for the establishment of genetic resources protection measures, the construction of core germplasm resources, and the study of the formation and evolution of Hamamelidaceae.


2019 ◽  
Vol 43 (3) ◽  
Author(s):  
Silvane de Fátima Siqueira ◽  
Pedro Higuchi ◽  
Ana Carolina da Silva

ABSTRACT The objective of the present work was to model the climate niche of Cedrela fissilis Vell. and to project the contemporary and future potential spatial distribution considering different climate change scenarios. Species occurrence data were obtained from the SpeciesLink and Global Biodiversity Information Facility (GBIF) databases. Altitude data, and 19 climate variables for both present and future conditions were obtained from the WorldClim database. The spatial prediction for the year 2070, considering an optimistic scenario (RCP 4.5) and a pessimistic one (RCP 8.5), was defined by Intergovernmental Panel on Climate Change (IPCC) regarding the concentration of greenhouse gases. The climate niche modeling was performed using the Maximum Entropy algorithm (MaxEnt). The results showed that C. fissilis has a wide geographic distribution, occurring in most South American countries. Its distribution showed a high correlation associated with the isothermal and precipitation variables in the humid month. In future scenarios, impacts on the climatic suitability of the areas in which the species occur, will not be spatially homogeneous. Indeed, reductions of about 47% (RCP4.5) and 63% (RCP8.5) are expected. It is recommended the creation and expansion of Conservation Units (CU) in areas that will remain climatically suitable for this species. The areas that will not have a favorable climate in the future should be considered strategic for genetic rescue and establishment of germplasm banks. Areas changing into a favorable climate should be considered as new areas of ecological and forestry interest.


2005 ◽  
Vol 33 (1) ◽  
pp. 185-188 ◽  
Author(s):  
Csilla Farkas ◽  
Roger Randriamampianina ◽  
Juraj Majerčak

Sign in / Sign up

Export Citation Format

Share Document