Experience with Metrological Traceability and Measurement Uncertainty in Clinical Chemistry

Author(s):  
Anders kallner
2009 ◽  
Vol 3 (3) ◽  
pp. 439-445 ◽  
Author(s):  
Cas Weykamp ◽  
W. Garry John ◽  
Andrea Mosca

The attraction of the simple biochemical concept combined with a clinical requirement for a long-term marker of glycolic control in diabetes has made hemoglobin A1c (HbA1c) one of the most important assays undertaken in the medical laboratory. The diversity in the biochemistry of glycation, clinical requirements, and management demands has resulted in a broad range of methods being developed since HbA1c was described in the late 1960s. A range of analytic principles are used for the measurement of HbA1c. The charge difference between hemoglobin A0 and HbA1c has been widely utilized to separate these two fractions, most notably found these days in ion-exchange high-performance liquid chromatography systems; the difference in molecular structure (affinity chromatography and immunochemical methods) are becoming widely available. Different results found in different laboratories using a variety of HbA1c analyses resulted in the need for standardization, most notably in the United States, Japan, and Sweden. Designated comparison methods are now located in these three countries, but as they are arbitrarily chosen and have differences in specificity, results of these methods and the reference values and action limits of the methods differ and only harmonized HbA1c in specific geographic areas. A reference measurement system within the concept of metrological traceability is now globally accepted as the only valid analytic anchor. However, there is still discussion over the units to be reported. The consensus statement of the International Federation of Clinical Chemistry (IFCC), the American Diabetes Association, the International Diabetes Federation, and the European Association for the Study of Diabetes suggests reporting HbA1c in IFCC units (mmol/mol), National Glycohemoglobin Standardization Program units (%), and estimated average glucose (either in mg/dl or mmol/liter). The implementation of this consensus statement raised new questions, to be answered in a concerted action of clinicians, biochemists, external quality assessment organizers, patient groups, and manufacturers.


Author(s):  
Gus Koerbin ◽  
Ken Sikaris ◽  
Graham R.D. Jones ◽  
Robert Flatman ◽  
Jillian R. Tate

Abstract The Australasian Association of Clinical Biochemists (AACB) has over the past 5 years been actively working to achieve harmonized reference intervals (RIs) for common clinical chemistry analytes using an evidence-based checklist approach where there is sound calibration and metrological traceability. It has now recommended harmonized RIs for 18 common clinical chemistry analytes which are performed in most routine laboratories and these have been endorsed by the Royal College of Pathologists of Australasia (RCPA). In 2017 another group of analytes including urea, albumin and arterial blood gas parameters were considered and suggested harmonized RIs proposed. This report provides an update of those harmonization efforts.


2019 ◽  
Vol 45 (1) ◽  
pp. 11-18
Author(s):  
Murat Keleş

Abstract Background The importance of managing analytical quality in clinical laboratories is known. Goal-setting models are critical for analytical quality management, along with correctly implemented error models. However, the methods used to determine analytical performance and more importantly, the relevant analytical quality goals are open to discussion. Our aim was to compare the analytical performance characteristics of routine clinical chemistry tests with different goal-setting models which was proposed by various establishments. In addition, to provide a perspective to Turkish total analytical error (TAE) circular letter that compulsory to calculate from 2016. Materials and methods This study was performed by the data obtained from the internal and external quality control of clinical chemistry tests which were measured by Roche Cobas c501 biochemistry analyzer. TAE calculated with TAE% = 1.65 ×(CV%) + Bias% formula. Nordtest uncertainty model was used in the calculation of measurement uncertainty (MU). In this context, total analytical error was evaluated with biological variation (BV), RCPA, CLIA and Turkish allowable total error (ATE) goals. Measurement uncertainty was evaluated with only permissible measurement uncertainty (pU%) goal. Results In our study, RCPA goals are the most stringent, followed by the BVEuBIVAS, BVRicos, pU%, CLIA and finally the ATETurkey goals coming in last. In cumulatively, BVEuBIVAS goals were 18.3% lower than BVRicos for evaluated parameters. Conclusion The balance between applicability and analytical assurance of goals should be well ensured when determining goal-setting models. Circular letter (2016/18) creates awareness to the analytical quality management but still open to development. Biological variation dependent total allowable error model never designed to be used as benchmarks for measurement uncertainty and it is not methodologically appropriate for assessing measurement uncertainty which was estimated by the Nordtest method. Also considered that, the use of “permissible MU” is more methodologically appropriate in the evaluation of measurement uncertainty.


2007 ◽  
Vol 1100 (1) ◽  
pp. 223-226 ◽  
Author(s):  
B. BERCIK INAL ◽  
M. KOLDAS ◽  
H. INAL ◽  
C. COSKUN ◽  
A. GUMUS ◽  
...  

Author(s):  
Anders Kallner

AbstractThe performance of all measurement procedures used in routine clinical laboratories shall be verified; a minimum is to verify the precision and trueness of the results. This is well established and adequate recommendations and procedures are available. Conveying this information in a form that is adequate and understandable for the practical end-user in the health care sector is still a much debated issue. By tradition, since several decades, the “total error” (TE) is presented, a quantity that is the linear sum of an imprecision and bias. Since any combination of the two can yield the same TE it may not be very helpful in finding and correcting a root-cause for an unacceptable value. Also, an acceptable TE may hide an unacceptable level of its constituents. An alternative is the measurement uncertainty (MU), which is recommended by accreditation and standardizing bodies The MU separates the imprecision and bias and expresses an interval around a best estimate within which the true value is expected with a certain probability. We describe the reporting the best estimate of a measurement result and describe how the uncertainty of the result, can be calculated, using simple custom-made software.


2017 ◽  
Vol 66 (4) ◽  
pp. 217-228
Author(s):  
Przemysław Piróg ◽  
Mariusz Górecki

The article discusses the method used in the Central Military Calibration Laboratory to calibrate Fluke 5790 AC/DC transfer standard with reference transfer standard Fluke 792A. It presents the measurement equation and the uncertainty budget. The contribution of uncertainty components in the measurement uncertainty has been presented. The metrological traceability has been evaluated by comparing calibration results with the results in the last Fluke certificate of calibration. Keywords: AC/DC converters, AC/DC difference, thermal voltage converters (TVCs), AC voltage measurement.


Author(s):  
Francesco Dati ◽  
Jillian R. Tate ◽  
Santica M. Marcovina ◽  
Armin Steinmetz

AbstractLipoprotein(a) is an important predictor of cardiovascular disease risk. The lack of internationally accepted standardization has impeded the broad application of this lipoprotein in laboratory medicine. The International Federation of Clinical Chemistry and Laboratory Medicine (IFCC), through its Working Group on Lipoprotein(a) and together with research institutions and several diagnostic companies, have succeeded in developing an international reference material that is intended for the transfer of a lipoprotein(a) concentration to manufacturers' master calibrators. IFCC SRM 2B has recently been accepted by the WHO Expert Committee on Biological Standardization as the ‘First WHO/IFCC International Reference Reagent for Lipoprotein(a) for Immunoassay’. The assigned unitage of 0.1071 nanomoles of lipoprotein(a) per vial is traceable to the consensus reference method for lipoprotein( a) and will enable conformity by diagnostic companies to the European Union's Directive on In vitro Diagnostic Medical Devices for the metrological traceability of calibrator materials.


Sign in / Sign up

Export Citation Format

Share Document