A new approach to phospholipid synthesis using tetrahydropyranyl glycerol: rapid access to phosphatidic acid and phosphatidylcholine, including mixed-chain glycerophospholipid derivatives

2006 ◽  
Vol 4 (12) ◽  
pp. 2358 ◽  
Author(s):  
Renato Rosseto ◽  
Niloufar Bibak ◽  
Joseph Hajdu
2010 ◽  
Vol 22 (8) ◽  
pp. 2796-2811 ◽  
Author(s):  
Peter J. Eastmond ◽  
Anne-Laure Quettier ◽  
Johan T.M. Kroon ◽  
Christian Craddock ◽  
Nicolette Adams ◽  
...  

1986 ◽  
Vol 236 (3) ◽  
pp. 829-837 ◽  
Author(s):  
E M Wynkoop ◽  
M J Broekman ◽  
H M Korchak ◽  
A J Marcus ◽  
G Weissmann

Neutrophils respond to chemoattractants by aggregating, degranulating, remodelling of phospholipids and releasing arachidonic acid. To determine whether ligand-induced remodelling of phospholipids depends on redistribution of intracellular organelles (degranulation), we compared phospholipid remodelling of human neutrophils with that of neutrophil-derived cytoplasts. Cytoplasts, organelle-depleted vesicles of cytosol surrounded by plasmalemma, cannot degranulate. Without a stimulus, [3H]arachidonate was incorporated preferentially into phosphatidylinositol (PI) and phosphatidylcholine (PC). Exposure of cytoplasts and neutrophils prelabelled with [3H]arachidonate or [14C]glycerol to fMet-Leu-Phe (10(-7) M) induced rapid changes in distribution of label and mass of individual phospholipids: [3H]arachidonate in phosphatidic acid (PA) increased 500% (120 s), [14C]glycerol incorporation and mass of PA approached 200% of unstimulated values, and [3H]arachidonate in PI decreased continuously; these data are compatible with activity of a PI/PA cycle. However, the mass of PI in both preparations and [14C]glycerol label in intact neutrophils increased initially (5 s), suggesting net synthesis and mobilization of more than one pool of PI. Heterogeneity of PC pools was also observed: [3H]arachidonate was lost from PC immediately upon addition of stimulus, whereas mass and [14C]glycerol values increased. Thus, net phospholipid synthesis, redistribution of arachidonate and activation of the PI/PA cycle are immediate responses of the neutrophil to receptor occupancy by chemoattractants. Furthermore, the similarity in response to fMet-Leu-Phe of neutrophils and granule-free cytoplasts indicates that these processes are independent of degranulation.


2020 ◽  
Vol 295 (7) ◽  
pp. 2148-2159 ◽  
Author(s):  
Diego E. Sastre ◽  
André A. Pulschen ◽  
Luis G. M. Basso ◽  
Jhonathan S. Benites Pariente ◽  
Caterina G. C. Marques Netto ◽  
...  

PlsX is the first enzyme in the pathway that produces phosphatidic acid in Gram-positive bacteria. It makes acylphosphate from acyl-acyl carrier protein (acyl-ACP) and is also involved in coordinating phospholipid and fatty acid biosyntheses. PlsX is a peripheral membrane enzyme in Bacillus subtilis, but how it associates with the membrane remains largely unknown. In the present study, using fluorescence microscopy, liposome sedimentation, differential scanning calorimetry, and acyltransferase assays, we determined that PlsX binds directly to lipid bilayers and identified its membrane anchoring moiety, consisting of a hydrophobic loop located at the tip of two amphipathic dimerization helices. To establish the role of the membrane association of PlsX in acylphosphate synthesis and in the flux through the phosphatidic acid pathway, we then created mutations and gene fusions that prevent PlsX's interaction with the membrane. Interestingly, phospholipid synthesis was severely hampered in cells in which PlsX was detached from the membrane, and results from metabolic labeling indicated that these cells accumulated free fatty acids. Because the same mutations did not affect PlsX transacylase activity, we conclude that membrane association is required for the proper delivery of PlsX's product to PlsY, the next enzyme in the phosphatidic acid pathway. We conclude that PlsX plays a dual role in phospholipid synthesis, acting both as a catalyst and as a chaperone protein that mediates substrate channeling into the pathway.


Author(s):  
Michael Overcash ◽  
Janet Twomey ◽  
Devi Kalla

Rapid access to or generation of life cycle information is a potentially valuable tool for the design of products to meet the needs of sustainability improvement. A new approach is developed to use the manufacturing unit process, commonly outlined in manufacturing process taxonomy systems, as the basis for life cycle inventory. This will initially involve 50–70 unit processes from the taxonomy and will generate energy and mass profiles for each unit process life cycle (uplci). These uplci can be adjusted for each case to include the major variables affecting such operations as related to any specific product. The sum of the performance of a sequence of uplci thus provides the life cycle of the specific product from a defined set of plant process inputs.


1999 ◽  
Vol 173 ◽  
pp. 185-188
Author(s):  
Gy. Szabó ◽  
K. Sárneczky ◽  
L.L. Kiss

AbstractA widely used tool in studying quasi-monoperiodic processes is the O–C diagram. This paper deals with the application of this diagram in minor planet studies. The main difference between our approach and the classical O–C diagram is that we transform the epoch (=time) dependence into the geocentric longitude domain. We outline a rotation modelling using this modified O–C and illustrate the abilities with detailed error analysis. The primary assumption, that the monotonity and the shape of this diagram is (almost) independent of the geometry of the asteroids is discussed and tested. The monotonity enables an unambiguous distinction between the prograde and retrograde rotation, thus the four-fold (or in some cases the two-fold) ambiguities can be avoided. This turned out to be the main advantage of the O–C examination. As an extension to the theoretical work, we present some preliminary results on 1727 Mette based on new CCD observations.


Author(s):  
V. Mizuhira ◽  
Y. Futaesaku

Previously we reported that tannic acid is a very effective fixative for proteins including polypeptides. Especially, in the cross section of microtubules, thirteen submits in A-tubule and eleven in B-tubule could be observed very clearly. An elastic fiber could be demonstrated very clearly, as an electron opaque, homogeneous fiber. However, tannic acid did not penetrate into the deep portion of the tissue-block. So we tried Catechin. This shows almost the same chemical natures as that of proteins, as tannic acid. Moreover, we thought that catechin should have two active-reaction sites, one is phenol,and the other is catechole. Catechole site should react with osmium, to make Os- black. Phenol-site should react with peroxidase existing perhydroxide.


Author(s):  
K. Chien ◽  
R. Van de Velde ◽  
I.P. Shintaku ◽  
A.F. Sassoon

Immunoelectron microscopy of neoplastic lymphoma cells is valuable for precise localization of surface antigens and identification of cell types. We have developed a new approach in which the immunohistochemical staining can be evaluated prior to embedding for EM and desired area subsequently selected for ultrathin sectioning.A freshly prepared lymphoma cell suspension is spun onto polylysine hydrobromide- coated glass slides by cytocentrifugation and immediately fixed without air drying in polylysine paraformaldehyde (PLP) fixative. After rinsing in PBS, slides are stained by a 3-step immunoperoxidase method. Cell monolayer is then fixed in buffered 3% glutaraldehyde prior to DAB reaction. After the DAB reaction step, wet monolayers can be examined under LM for presence of brown reaction product and selected monolayers then processed by routine methods for EM and embedded with the Chien Re-embedding Mold. After the polymerization, the epoxy blocks are easily separated from the glass slides by heatingon a 100°C hot plate for 20 seconds.


Author(s):  
W. A. Chiou ◽  
N. Kohyama ◽  
B. Little ◽  
P. Wagner ◽  
M. Meshii

The corrosion of copper and copper alloys in a marine environment is of great concern because of their widespread use in heat exchangers and steam condensers in which natural seawater is the coolant. It has become increasingly evident that microorganisms play an important role in the corrosion of a number of metals and alloys under a variety of environments. For the past 15 years the use of SEM has proven to be useful in studying biofilms and spatial relationships between bacteria and localized corrosion of metals. Little information, however, has been obtained using TEM capitalizing on its higher spacial resolution and the transmission observation of interfaces. The research presented herein is the first step of this new approach in studying the corrosion with biological influence in pure copper.Commercially produced copper (Cu, 99%) foils of approximately 120 μm thick exposed to a copper-tolerant marine bacterium, Oceanospirillum, and an abiotic culture medium were subsampled (1 cm × 1 cm) for this study along with unexposed control samples.


Sign in / Sign up

Export Citation Format

Share Document