Carbon-bonded silver nanoparticles: alkyne-functionalized ligands for SERS imaging of mammalian cells

2011 ◽  
Vol 47 (11) ◽  
pp. 3156 ◽  
Author(s):  
David C. Kennedy ◽  
Craig S. McKay ◽  
Li-lin Tay ◽  
Yanouchka Rouleau ◽  
John P. Pezacki
Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 317
Author(s):  
HanGoo Kang ◽  
Jinwon Seo ◽  
Eun-Jeong Yang ◽  
In-Hong Choi

Silver nanoparticles (AgNPs) are widely used in various fields because of their antimicrobial properties. However, many studies have reported that AgNPs can be harmful to both microorganisms and humans. Reactive oxygen species (ROS) are a key factor of cytotoxicity of AgNPs in mammalian cells and an important factor in the immune reaction of neutrophils. The immune reactions of neutrophils include the expulsion of webs of DNA surrounded by histones and granular proteins. These webs of DNA are termed neutrophil extracellular traps (NETs). NETs allow neutrophils to catch and destroy pathogens in extracellular spaces. In this study, we investigated how AgNPs stimulate neutrophils, specifically focusing on NETs. Freshly isolated human neutrophils were treated with 5 or 100 nm AgNPs. The 5 nm AgNPs induced NET formation, but the 100 nm AgNPs did not. Subsequently, we investigated the mechanism of AgNP-induced NETs using known inhibitors related to NET formation. AgNP-induced NETs were dependent on ROS, peptidyl arginine deiminase, and neutrophil elastase. The result in this study indicates that treatment of 5 nm AgNPs induce NET formation through histone citrullination by peptidyl arginine deiminase and histone cleavage by neutrophil elastase.


2012 ◽  
Vol 3 ◽  
Author(s):  
Hui Kheng Lim ◽  
P. V. Asharani ◽  
M. Prakash Hande

PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e102108 ◽  
Author(s):  
Angela Ivask ◽  
Imbi Kurvet ◽  
Kaja Kasemets ◽  
Irina Blinova ◽  
Villem Aruoja ◽  
...  

2021 ◽  
Vol 22 (24) ◽  
pp. 13428
Author(s):  
Guillem Ferreres ◽  
Sílvia Pérez-Rafael ◽  
Juan Torrent-Burgués ◽  
Tzanko Tzanov

Silver nanoparticles (Ag NPs) appeared as promising antimicrobial candidates to face the development of antibiotic resistance. Although reported as toxic towards mammalian cells, their combination with biomolecules have shown reduced toxicity, while maintaining the antimicrobial function. Herein, hyaluronic acid (HA) with low (40 kDa), medium (200 and 600 kDa) and high (2 MDa) molecular weight (Mw) was modified with adipic acid dihydrazide (ADH) and used as reducing and capping agents to synthesise antimicrobial hybrid Ag NPs. The Mw of the polymer played a crucial role in the morphology, size and antibacterial activity of the Ag NPs. The 600 and 200 kDa HA-ADH-Ag NPs were able to reduce the Escherichia coli and Staphylococcus aureus concentration by more than 3 logs, while the 40 kDa NPs reached ~2 logs reduction. The 2 MDa HA-ADH failed to form homogenous NPs with strong bactericidal activity. A mechanistic study of the interaction with a model bacterial membrane using Langmuir isotherms confirmed the greater interaction between bacteria and higher Mw polymers and the effect of the NP’s morphology. The nanocomposites low toxicity to human skin cells was demonstrated in vitro, showing more than 90% cell viability after incubation with the NPs.


2019 ◽  
Vol 19 (11) ◽  
pp. 6933-6941
Author(s):  
Daissy Julieth Paredes Guerrero ◽  
Jhon Jhamilton Artunduaga Bonilla ◽  
Claudia Cristina Ortiz López ◽  
Rodrigo Gonzalo Torres Sáez

Encapsulation with biodegradable polymers is an alternative to reduce adverse effects and improve the physicochemical properties of metallic nanoparticles. In this study, spherical polymeric nanoparticles with an average size of 200 nm loaded with silver nanoparticles (AgNPs) were obtained. The antimicrobial activity against Escherichia coli O157:H7, methicillin-resistant Staphylococcus aureus (MRSA), and yeasts as Candida albicans, Candida parapsilosis and Candida guilliermondii was determined. MIC90 values of nanocomposites were between 0.01 to 1 μg/mL, potentialized effect up to 500 times compared to free AgNPs. In addition, cytotoxic effect on 50% of murine fibroblast (CC50) was obtained at a mean concentration of 9.57 μg/mL of AgNPs (up to ~1000 times higher than MIC90). Consequently, the polymeric nanocomposites loaded with AgNPs are a potential alternative in the development of new biocide agents on Candida species and pathogenic bacteria at non-toxic concentrations for mammalian cells such as murine fibroblasts.


2011 ◽  
Vol 47 (14) ◽  
pp. 4129 ◽  
Author(s):  
Sandra Preciado-Flores ◽  
Damon A. Wheeler ◽  
Tuan Minh Tran ◽  
Zuki Tanaka ◽  
Chaoyang Jiang ◽  
...  

2019 ◽  
Vol 20 (2) ◽  
pp. 449 ◽  
Author(s):  
Chengzhu Liao ◽  
Yuchao Li ◽  
Sie Tjong

Silver nanoparticles (AgNPs) can be synthesized from a variety of techniques including physical, chemical and biological routes. They have been widely used as nanomaterials for manufacturing cosmetic and healthcare products, antimicrobial textiles, wound dressings, antitumor drug carriers, etc. due to their excellent antimicrobial properties. Accordingly, AgNPs have gained access into our daily life, and the inevitable human exposure to these nanoparticles has raised concerns about their potential hazards to the environment, health, and safety in recent years. From in vitro cell cultivation tests, AgNPs have been reported to be toxic to several human cell lines including human bronchial epithelial cells, human umbilical vein endothelial cells, red blood cells, human peripheral blood mononuclear cells, immortal human keratinocytes, liver cells, etc. AgNPs induce a dose-, size- and time-dependent cytotoxicity, particularly for those with sizes ≤10 nm. Furthermore, AgNPs can cross the brain blood barrier of mice through the circulation system on the basis of in vivo animal tests. AgNPs tend to accumulate in mice organs such as liver, spleen, kidney and brain following intravenous, intraperitoneal, and intratracheal routes of administration. In this respect, AgNPs are considered a double-edged sword that can eliminate microorganisms but induce cytotoxicity in mammalian cells. This article provides a state-of-the-art review on the synthesis of AgNPs, and their applications in antimicrobial textile fabrics, food packaging films, and wound dressings. Particular attention is paid to the bactericidal activity and cytotoxic effect in mammalian cells.


Sign in / Sign up

Export Citation Format

Share Document