Convenient photooxidation of alcohols using dye sensitised zinc oxide in combination with silver nitrate and TEMPO

2012 ◽  
Vol 48 (2) ◽  
pp. 299-301 ◽  
Author(s):  
Vineet Jeena ◽  
Ross S. Robinson
Keyword(s):  
2015 ◽  
Vol 1101 ◽  
pp. 164-168 ◽  
Author(s):  
Shih Fong Lee ◽  
Li Ying Lee ◽  
Yung Ping Chang

In this study, silver-doped zinc oxide (ZnO) nanorods were grown by a solution method and the effect of varying the doping concentration on the electrical property and component characteristics of the synthesized ZnO nanorods were studied. The ZnO nanorods were grown in the mixed solution of zinc nitrate hexahydrate (Zn (NO3)2·6H2O), hexamethylenetetramine (C6H12N4), and silver nitrate (AgNO3) at 90oC for 2 hours. The purpose of silver nitrate was to supply dopant atoms. Field-emission scanning electron microscopy (FE-SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) were used to investigate the surface morphology, chemical compositions, and microstructure of silver-doped ZnO nanorods, and the electrical properties were determined by Hall effect measurement. As found by EDS results, dopant atoms Ag have been successfully incorporated into the crystalline structure of ZnO nanorods, and the conductivity, concentration and mobility of majority carrier in ZnO nanorods have been modified accordingly.


2020 ◽  
Vol 1007 ◽  
pp. 143-147
Author(s):  
Sujittra Kaenphakdee ◽  
Supan Yodyingyong ◽  
Jeerapond Leelawattanachai ◽  
Wannapong Triampo ◽  
Noppakun Sanpo ◽  
...  

Undoped ZnO and Ag-doped ZnO were prepared to use as near-infrared (NIR) shielding by simple precipitation method with zinc acetate and zinc nitrate as Zn precursor and silver nitrate as Ag precursor. The Ag-doped ZnO and undoped ZnO were characterized by XRD, SEM, and UV-vis-NIR spectrophotometer. The NIR reflectance performance reveals that Ag-doping improves the NIR shielding and optical property of pure ZnO. The 10 mol% Ag loading shows the lowest reflection in the visible region of about 15% and the highest reflection in the NIR region of about 50%. It not only shows the best NIR reflection but also exhibits the best thermal insulation. It reduces the inner temperature of the in-lab setup to mimic a house by 7.5°C when compared to the uncoated glass window. It is concluded that 10 mol% Ag-doped ZnO nanoparticles can result in UV-NIR shielding coatings.


Author(s):  
Alexey V. Shaposhnik ◽  
Alexey A. Zviagin ◽  
Olga V. Dyakonova ◽  
Stanislav V. Ryabtsev ◽  
Dina Ghareeb

The aim of the work was to create a selective gas sensor for hydrogen sulphide. As a result of adding ammonia to the zinc acetate solution, centrifuging the obtained zinc hydroxide and subsequent calcination, a polydisperse zinc oxide powder with a grain size of 5–50 nm was obtained. The material was characterized using X-ray phase analysis and transmission electron microscopy. Subsequently, silver nitrate and terpeniol were added to the zinc oxide nanopowder to form a paste. The gas-sensitive material was obtained by applying the resulting paste on a special dielectric substrate and subsequent calcination, as a result of which the terpeniol burned out, and the silver nitrate turned into an oxide (the mass fraction of the silver was 3%). A non-stationary temperature mode for the operation of the sensor was selected, in which, after rapidheating of the sensor to 450 °C (2 seconds), slow (13 seconds) cooling to 100 °C occurred. Each subsequent heating-cooling cycle with a total period of 15 seconds began immediately after the end of the previous cycle. The use of an unsteady temperature mode in combination with the selection of the composition of the gas-sensitive layer made it possible to obtain a response of 200 for a hydrogen sulphide concentration of 1 ppm. Along with an increase in sensitivity, a significant increase in selectivity was also observed. The cross-sensitivity for the determination of hydrogen sulphide and other reducing gases (CO, NH3, H2) was more than three orders of magnitude. Thus, this sensor can be used to detect hydrogen sulphide even in the presence of interfering components. The use of highly selective sensors in the tasks of qualitative andquantitative analysis can significantly simplify the calibration in comparison with “electronic nose” devices. Devices based on highly selective sensors do not require the use of mathematical methods for processing multidimensional data arrays.


Author(s):  
P. Sadhukhan ◽  
J. B. Zimmerman

Rubber stocks, specially tires, are composed of natural rubber and synthetic polymers and also of several compounding ingredients, such as carbon black, silica, zinc oxide etc. These are generally mixed and vulcanized with additional curing agents, mainly organic in nature, to achieve certain “designing properties” including wear, traction, rolling resistance and handling of tires. Considerable importance is, therefore, attached both by the manufacturers and their competitors to be able to extract, identify and characterize various types of fillers and pigments. Several analytical procedures have been in use to extract, preferentially, these fillers and pigments and subsequently identify and characterize them under a transmission electron microscope.Rubber stocks and tire sections are subjected to heat under nitrogen atmosphere to 550°C for one hour and then cooled under nitrogen to remove polymers, leaving behind carbon black, silica and zinc oxide and 650°C to eliminate carbon blacks, leaving only silica and zinc oxide.


Author(s):  
K. Chien ◽  
R.C. Heusser ◽  
M.L. Jones ◽  
R.L. Van de Velde

Silver impregnation techniques have been used for the demonstration of the complex carbohydrates in electron microscopy. However, the silver stains were believed to be technically sensitive and time consumming to perform. Currently, due to the need to more specifically evaluate immune complex for localization in certain renal diseases, a simplified procedure in conjunction with the use of the microwave has been developed and applied to renal and other biopsies. The procedure is as follows:Preparation of silver methenamine solution:1. 15ml graduated, clear polystyrene centrifuge tube (Falcon, No. 2099) was rinsed once with distilled water.2. 3% hexamethylene tetramine (methenamine) was added into the centrifuge tube to the 6ml mark.3. 3% silver nitrate was added slowly to the methenamine to the 7ml mark while agitating. (Solution will instantly turn milky in color and then clear rapidly by mixing. No precipitate should be formed).4. 2% sodium borate was added to the solution to the 8ml mark, mixed and centrifuged before use.


Author(s):  
T. A. Emma ◽  
M. P. Singh

Optical quality zinc oxide films have been characterized using reflection electron diffraction (RED), replication electron microscopy (REM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Significant microstructural differences were observed between rf sputtered films and planar magnetron rf sputtered films. Piezoelectric materials have been attractive for applications to integrated optics since they provide an active medium for signal processing. Among the desirable physical characteristics of sputtered ZnO films used for this and related applications are a highly preferred crystallographic texture and relatively smooth surfaces. It has been found that these characteristics are very sensitive to the type and condition of the substrate and to the several sputtering parameters: target, rf power, gas composition and substrate temperature.


2019 ◽  
Vol 14 (1) ◽  
pp. 110
Author(s):  
Assiss. Prof. Dr. Sabiha Mahdi Mahdi ◽  
Dr. Firas Abd K. Abd K.

Aim: The aimed study was to evaluate the influence of silver nitrate on surfacehardness and tensile strength of acrylic resins.Materials and methods: A total of 60 specimens were made from heat polymerizingresins. Two mechanical tests were utilized (surface hardness and tensile strength)and 4 experimental groups according to the concentration of silver nitrate used.The specimens without the use of silver nitrate were considered as control. Fortensile strength, all specimens were subjected to force till fracture. For surfacehardness, the specimens were tested via a durometer hardness tester. Allspecimens data were analyzed via ANOVA and Tukey tests.Results: The addition of silver nitrate to acrylic resins reduced significantly thetensile strength. Statistically, highly significant differences were found among allgroups (P≤0.001). Also, the difference between control and experimental groupswas highly significant (P≤0.001). For surface hardness, the silver nitrate improvedthe surface hardness of acrylics. Highly significant differences were statisticallyobserved between control and 900 ppm group (P≤0.001); and among all groups(P≤0.001)with exception that no significant differences between control and150ppm; and between 150ppm and 900ppm groups(P>0.05).Conclusion: The addition of silver nitrate to acrylics reduced significantly the tensilestrength and improved slightly the surface hardness.


Sign in / Sign up

Export Citation Format

Share Document