The influence of nitrogen dioxide on the determination of hydrogen cyanide in mainstream and sidestream cigarette smoke and the improvement of the determination method by continuous flow analyzer

2014 ◽  
Vol 6 (24) ◽  
pp. 9841-9849 ◽  
Author(s):  
Xingyu Liu ◽  
Li Ma ◽  
Jun Zhou ◽  
Yanjun Ma ◽  
Ruoshi Bai ◽  
...  

Hydrogen cyanide is a well-known toxic component in cigarette smoke. Accurate determination of hydrogen cyanide is of great significance to assess the risk of cigarettes to public health.

Author(s):  
Manjunatha Chinnaiahnapalya Maranna ◽  
Lalgudy Mahadevan Saikrishnan ◽  
Tarur Konikkaledom Dinesh ◽  
Kamal Kumar Tyagi

SummaryA new safe and sensitive method to determine hydrogen cyanide (HCN) in cigarette smoke using continuous flow analyser (CFA) has been developed and validated. The use of highly toxic potassium cyanide (KCN) as a standard necessitates the development of a safer method for the determination of HCN in cigarette smoke. In this described method KCN is replaced by less toxic potassium tetracyanozincate (Lethal Dose LD50 oral is 7.49 mg/kg for KCN and 2000 mg/kg for potassium tetracyanozincate). Furthermore, the new method uses isonicotinic acid-barbituric acid (coupling reagent) instead of pyridine-pyrazolone as a reagent for the determination of HCN, and hence eliminates the use of pyridine. In this method HCN is trapped on both the Cambridge Filter Pad, then extracted with aqueous sodium hydroxide solution, and in an impinger containing the same solution. The solution thus extracted is oxidised to cyanogen chloride by Chloramine-T and treated with coupling reagent, the resulting stable chromophore was measured colorimetrically at 600 nm. The regression equation was linear in the range of 1 to 25 μg/mL for cyanide with a correlation coefficient (R2) > 0.9998. The limit of detection (LOD) was 0.76 μg/cig and the overall relative standard deviation (RSD) of the method was less than 10%. Excellent recoveries of cyanide were obtained in the range from 92% to 112% and the HCN yields from the Kentucky Reference Cigarette 3R4F obtained from the newly developed method are in good agreement with those from the conventional KCN method. The proposed method is robust, reliable, selective and safer than any of the existing methods for determination of hydrogen cyanide in mainstream as well as in sidestream cigarette smoke.


Author(s):  
Cephas H. Sloan

AbstractWe have described a method for determining the HCN delivered in whole cigarette smoke and in smoke condensate extracted from filters. The method is simple, rapid and precise. It eliminates many manual operations and is semi-automatic.


1999 ◽  
Vol 364 (8) ◽  
pp. 786-787 ◽  
Author(s):  
Y. Jiang ◽  
N. Lu ◽  
Feng Yu ◽  
Qing Li ◽  
Hongding Xu

Author(s):  
R.D. Leapman ◽  
P. Rez ◽  
D.F. Mayers

Microanalysis by EELS has been developing rapidly and though the general form of the spectrum is now understood there is a need to put the technique on a more quantitative basis (1,2). Certain aspects important for microanalysis include: (i) accurate determination of the partial cross sections, σx(α,ΔE) for core excitation when scattering lies inside collection angle a and energy range ΔE above the edge, (ii) behavior of the background intensity due to excitation of less strongly bound electrons, necessary for extrapolation beneath the signal of interest, (iii) departures from the simple hydrogenic K-edge seen in L and M losses, effecting σx and complicating microanalysis. Such problems might be approached empirically but here we describe how computation can elucidate the spectrum shape.The inelastic cross section differential with respect to energy transfer E and momentum transfer q for electrons of energy E0 and velocity v can be written as


Author(s):  
M.A. Gribelyuk ◽  
M. Rühle

A new method is suggested for the accurate determination of the incident beam direction K, crystal thickness t and the coordinates of the basic reciprocal lattice vectors V1 and V2 (Fig. 1) of the ZOLZ plans in pixels of the digitized 2-D CBED pattern. For a given structure model and some estimated values Vest and Kest of some point O in the CBED pattern a set of line scans AkBk is chosen so that all the scans are located within CBED disks.The points on line scans AkBk are conjugate to those on A0B0 since they are shifted by the reciprocal vector gk with respect to each other. As many conjugate scans are considered as CBED disks fall into the energy filtered region of the experimental pattern. Electron intensities of the transmitted beam I0 and diffracted beams Igk for all points on conjugate scans are found as a function of crystal thickness t on the basis of the full dynamical calculation.


Author(s):  
F.A. Ponce ◽  
H. Hikashi

The determination of the atomic positions from HRTEM micrographs is only possible if the optical parameters are known to a certain accuracy, and reliable through-focus series are available to match the experimental images with calculated images of possible atomic models. The main limitation in interpreting images at the atomic level is the knowledge of the optical parameters such as beam alignment, astigmatism correction and defocus value. Under ordinary conditions, the uncertainty in these values is sufficiently large to prevent the accurate determination of the atomic positions. Therefore, in order to achieve the resolution power of the microscope (under 0.2nm) it is necessary to take extraordinary measures. The use of on line computers has been proposed [e.g.: 2-5] and used with certain amount of success.We have built a system that can perform operations in the range of one frame stored and analyzed per second. A schematic diagram of the system is shown in figure 1. A JEOL 4000EX microscope equipped with an external computer interface is directly linked to a SUN-3 computer. All electrical parameters in the microscope can be changed via this interface by the use of a set of commands. The image is received from a video camera. A commercial image processor improves the signal-to-noise ratio by recursively averaging with a time constant, usually set at 0.25 sec. The computer software is based on a multi-window system and is entirely mouse-driven. All operations can be performed by clicking the mouse on the appropiate windows and buttons. This capability leads to extreme friendliness, ease of operation, and high operator speeds. Image analysis can be done in various ways. Here, we have measured the image contrast and used it to optimize certain parameters. The system is designed to have instant access to: (a) x- and y- alignment coils, (b) x- and y- astigmatism correction coils, and (c) objective lens current. The algorithm is shown in figure 2. Figure 3 shows an example taken from a thin CdTe crystal. The image contrast is displayed for changing objective lens current (defocus value). The display is calibrated in angstroms. Images are stored on the disk and are accessible by clicking the data points in the graph. Some of the frame-store images are displayed in Fig. 4.


Sign in / Sign up

Export Citation Format

Share Document