Smart dual-functional warhead for folate receptor-specific activatable imaging and photodynamic therapy

2014 ◽  
Vol 50 (73) ◽  
pp. 10600-10603 ◽  
Author(s):  
Jisu Kim ◽  
Ching-Hsuan Tung ◽  
Yongdoo Choi

Folic acid as a bi-functional warhead to develop smart dual-targeted theranostic agents.

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Keegan Guidolin ◽  
Lili Ding ◽  
Juan Chen ◽  
Brian C. Wilson ◽  
Gang Zheng

Abstract Porphysomes (PS) are liposome-like nanoparticles comprising pyropheophorbide-conjugated phospholipids that have demonstrated potential as multimodal theranostic agents for applications that include phototherapies, targeted drug delivery and in vivo fluorescence, photoacoustic, magnetic resonance or positron emission imaging. Previous therapeutic applications focused primarily on photothermal therapy (PTT) and suggested that PSs require target-triggered activation for use as photodynamic therapy (PDT) sensitizers. Here, athymic nude mice bearing subcutaneous A549 human lung tumors were randomized into treatment and control groups: PS-PDT at various doses, PS-only and no treatment negative controls, as well as positive controls using the clinical photosensitizer Photofrin. Animals were followed for 30 days post-treatment. PS-PDT at all doses demonstrated a significant tumor ablative effect, with the greatest effect seen with 10 mg/kg PS at a drug-light interval of 24 h. By comparison, negative controls (PS-only, Photofrin-only, and no treatment) showed uncontrolled tumor growth. PDT with Photofrin at 5 mg/kg and PS at 10 mg/kg demonstrated similar tumor growth suppression and complete tumor response rates (15 vs. 25%, p = 0.52). Hence, porphysome nanoparticles are an effective PDT agent and have the additional advantages of multimodal diagnostic and therapeutic applications arising from their intrinsic structure. Porphysomes may also be the first single all-organic agent capable of concurrent PDT and PTT.


2021 ◽  
Vol 9 (4) ◽  
pp. 1232-1236
Author(s):  
Yujie Zhang ◽  
Wendi Huang ◽  
Xueying Tan ◽  
Jinhui Wang ◽  
Yufen Zhao ◽  
...  

A mitochondria-targeted dual-functional aggregation-induced emission luminogen, TPP-TPEDCH, was rationally designed and developed for intracellular mitochondrial imaging and photodynamic therapy.


2020 ◽  
Vol 9 (1) ◽  
pp. 192 ◽  
Author(s):  
Alexandre Quilbe ◽  
Olivier Moralès ◽  
Martha Baydoun ◽  
Abhishek Kumar ◽  
Rami Mustapha ◽  
...  

To date, pancreatic adenocarcinoma (ADKP) is a devastating disease for which the incidence rate is close to the mortality rate. The survival rate has evolved only 2–5% in 45 years, highlighting the failure of current therapies. Otherwise, the use of photodynamic therapy (PDT), based on the use of an adapted photosensitizer (PS) has already proved its worth and has prompted a growing interest in the field of oncology. We have developed a new photosensitizer (PS-FOL/PS2), protected by a recently published patent (WO2019 016397-A1, 24 January 2019). This photosensitizer is associated with an addressing molecule (folic acid) targeting the folate receptor 1 (FOLR1) with a high affinity. Folate binds to FOLR1, in a specific way, expressed in 100% of ADKP or over-expressed in 30% of cases. The first objective of this study is to evaluate the effectiveness of this PS2-PDT in four ADKP cell lines: Capan-1, Capan-2, MiapaCa-2, and Panc-1. For this purpose, we first evaluated the gene and protein expression of FOLR1 on four ADKP cell lines. Subsequently, we evaluated PS2’s efficacy in our cell lines and we assessed the impact of PDT on the secretome of cancer cells and its impact on the immune system. Finally, we evaluate the PDT efficacy on a humanized SCID mouse model of pancreatic cancer. In a very interesting way, we observed a significant increase in the proliferation of activated-human PBMC when cultured with conditioned media of ADKP cancer cells subjected to PDT. Furthermore, to evaluate in vivo the impact of this new PS, we analyzed the tumor growth in a humanized SCID mice model of pancreatic cancer. Four conditions were tested: Untreated, mice (nontreated), mice with PS (PS2), mice subjected to illumination (Light only), and mice subjected to illumination in the presence of PS (PDT). We noticed that the mice subjected to PDT presented a strong decrease in the growth of the tumor over time after illumination. Our investigations have not only suggested that PS2-PDT is an effective therapy in the treatment of PDAC but also that it activates the immune system and could be considered as a real adjuvant for anti-cancer vaccination. Thus, this new study provides new treatment options for patients in a therapeutic impasse and will provide a new arsenal in the fight against PDAC.


RSC Advances ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 1282-1286
Author(s):  
Zhang Jiayin ◽  
Wang Qiyu ◽  
Liang Hong ◽  
Song Guoli ◽  
Zhang Zhiguo

An optimal Tm3+ concentration of approximately 1% was determined for the most efficient energy distribution to balance imaging and PDT.


Talanta ◽  
2018 ◽  
Vol 183 ◽  
pp. 39-47 ◽  
Author(s):  
Junli Zhang ◽  
Xuewei Zhao ◽  
Ming Xian ◽  
Chuan Dong ◽  
Shaomin Shuang

2021 ◽  
Vol 17 (2) ◽  
pp. 205-215
Author(s):  
Zhenbo Sun ◽  
Mingfang Luo ◽  
Jia Li ◽  
Ailing Wang ◽  
Xucheng Sun ◽  
...  

Imaging-guided cancer theranostic is a promising strategy for cancer diagnostic and therapeutic. Photodynamic therapy (PDT), as an approved treatment modality, is limited by the poor solubility and dispersion of photosensitizers (PS) in biological fluids. Herein, it is demonstrated that superparamagnetic iron oxide (SPIO)-based nanoparticles (SCFs), prepared by conjugated with Chlorin e6 (Ce6) and modified with folic acid (FA) on the surface, can be used as versatile drug delivery vehicles for effective PDT. The nanoparticles are great carriers for photosensitizer Ce6 with an extremely high loading efficiency. In vitro fluorescence imaging and in vivo magnetic resonance imaging (MRI) results indicated that SCFs selectively accumulated in tumor cells. Under near-infrared laser irradiation, SCFs were confirmed to be capable of inducing low cell viability of RM-1 cells In vitro and displaying efficient tumor ablation with negligible side effects in tumor-bearing mice models.


2021 ◽  
Author(s):  
Peng Yin ◽  
Wei Zhang ◽  
Lei Shang ◽  
Rong-Na Ma ◽  
Liping Jia ◽  
...  

Most biosensors for protein folate receptor(FR) detection based on small molecule folic acid(FA) recognition usually introduced FA linked single strand DNA(FA-ssDNA) and nuclease to promote sensitivity, which increased expenses and...


Sign in / Sign up

Export Citation Format

Share Document