scholarly journals Heterogeneous catalysis for sustainable biodiesel productionviaesterification and transesterification

2014 ◽  
Vol 43 (22) ◽  
pp. 7887-7916 ◽  
Author(s):  
Adam F. Lee ◽  
James A. Bennett ◽  
Jinesh C. Manayil ◽  
Karen Wilson

Low temperature catalytic conversion of triglycerides and fatty acids sourced from renewable feedstocks represents a key enabling technology for the sustainable production of biodiesel through energy efficient, intensified processes.


1980 ◽  
Vol 45 (12) ◽  
pp. 3402-3407 ◽  
Author(s):  
Jaroslav Bartoň ◽  
Vladimír Pour

The course of the conversion of methanol with water vapour was followed on a low-temperature Cu-Zn-Cr-Al catalyst at pressures of 0.2 and 0.6 MPa. The kinetic data were evaluated together with those obtained at 0.1 MPa and the following equation for the reaction kinetics at the given conditions was derived: r = [p(CH3OH)p(H2O)]0.5[p(H2)]-1.3.



Author(s):  
Priyanka Verma ◽  
Ravinder Kumar Wanchoo ◽  
Amrit Pal Toor

Sulphonate-grafted-Titania (SO3H-TiO2) quantum dot catalyzed photochemical process offered an energy-efficient, accelerated, and safe approach to synthesize lactic acid esters at ambient temperature conditions. This low-temperature route is conceived in line...



2021 ◽  
Vol 22 (4) ◽  
pp. 1554
Author(s):  
Tawhidur Rahman ◽  
Mingxuan Shao ◽  
Shankar Pahari ◽  
Prakash Venglat ◽  
Raju Soolanayakanahally ◽  
...  

Cuticular waxes are a mixture of hydrophobic very-long-chain fatty acids and their derivatives accumulated in the plant cuticle. Most studies define the role of cuticular wax largely based on reducing nonstomatal water loss. The present study investigated the role of cuticular wax in reducing both low-temperature and dehydration stress in plants using Arabidopsis thaliana mutants and transgenic genotypes altered in the formation of cuticular wax. cer3-6, a known Arabidopsis wax-deficient mutant (with distinct reduction in aldehydes, n-alkanes, secondary n-alcohols, and ketones compared to wild type (WT)), was most sensitive to water loss, while dewax, a known wax overproducer (greater alkanes and ketones compared to WT), was more resistant to dehydration compared to WT. Furthermore, cold-acclimated cer3-6 froze at warmer temperatures, while cold-acclimated dewax displayed freezing exotherms at colder temperatures compared to WT. Gas Chromatography-Mass Spectroscopy (GC-MS) analysis identified a characteristic decrease in the accumulation of certain waxes (e.g., alkanes, alcohols) in Arabidopsis cuticles under cold acclimation, which was additionally reduced in cer3-6. Conversely, the dewax mutant showed a greater ability to accumulate waxes under cold acclimation. Fourier Transform Infrared Spectroscopy (FTIR) also supported observations in cuticular wax deposition under cold acclimation. Our data indicate cuticular alkane waxes along with alcohols and fatty acids can facilitate avoidance of both ice formation and leaf water loss under dehydration stress and are promising genetic targets of interest.



2005 ◽  
Vol 19 (3) ◽  
pp. 736-743 ◽  
Author(s):  
Yean-Sang Ooi ◽  
Ridzuan Zakaria ◽  
Abdul Rahman Mohamed ◽  
Subhash Bhatia




2013 ◽  
Vol 1513 ◽  
Author(s):  
Toshitaka Ishizaki ◽  
Ryota Watanabe ◽  
Kunio Akedo ◽  
Toshikazu Satoh

ABSTRACTCu nanoparticles capped with fatty acids and amines were developed as low-temperature sintering materials. The fatty acids and amines used were decanoic acid + decyl amine (C10) and oleic acid + oleyl amine (C18), respectively. The synthesized Cu nanoparticles were analyzed using X-ray diffraction, transmission electron microscopy, and thermogravimetric and differential thermal analysis. Because both of the capping layers could be decomposed at temperatures lower than 300°C even under an inert atmosphere, bonding and sintering experiments could be carried out in the absence of oxygen to prevent the oxidation of the Cu nanoparticles. The sintered structures were observed using scanning electron microscopy. The shear strengths of Cu plates bonded using the C18 Cu nanoparticles were larger than those of plates bonded using the C10 Cu nanoparticles. At 300°C, the strength was higher than 30 MPa, and of the same order as ordinary high-temperature solders, even though the processing temperature was low. The resistivity of a film sintered using the C18 Cu nanoparticles was 12 μΩcm at 300°C, which was lower than the values reported in previous studies.



2017 ◽  
Vol 129 (46) ◽  
pp. 14732-14736 ◽  
Author(s):  
Michiel Pelckmans ◽  
Walter Vermandel ◽  
Frederik Van Waes ◽  
Kristof Moonen ◽  
Bert F. Sels




2018 ◽  
Vol 2 (4) ◽  
pp. 882-893 ◽  
Author(s):  
Taylor C. Schulz ◽  
Mason Oelschlager ◽  
Simon T. Thompson ◽  
Wim F. J. Vermaas ◽  
David R. Nielsen ◽  
...  

A two-step catalytic process for converting cyanobacteria-derived fatty acids to linear and branched alkanes for synthetic paraffinic kerosene was demonstrated.



Sign in / Sign up

Export Citation Format

Share Document