Sulfidation of copper oxide nanoparticles and properties of resulting copper sulfide

2014 ◽  
Vol 1 (4) ◽  
pp. 347-357 ◽  
Author(s):  
Rui Ma ◽  
John Stegemeier ◽  
Clément Levard ◽  
James G. Dale ◽  
Clinton W. Noack ◽  
...  

Sulfidation of 40 nm CuO nanoparticles in water yields poorly structured CuxSyand crystalline covellite (CuS) with increasing apparent solubility.

Author(s):  
Shivani Kushwaha

Abstract: Nanotechnology is a rising field of science and technology that deals with the particles having size in the range of 1 to 100 nm. Copper oxide nanoparticles has many properties like antifungal activity, antibacterial activity, optical properties, conductive properties, etc. Due to its demand of diversified use, copper oxide nanoparticles were fabricated using ecofriendly and non-toxic Annona muricata stem extract. The extract with copper sulphate pentahydrate showed gradual change in the colour of the extract from brown to green which indicates the CuO nanoparticles synthesis. The fabrication is followed by characterization of CuO nanoparticles using UV-vis spectroscope, FTIR, XRD and SEM. The characterization showed roughly spherical shaped nanoparticles in the range of 100nm with high crystalline monoclinic phase. FTIR absorption spectra conclude that the compounds attached with copper oxide nanoparticles could be polyphenols with aromatic ring. The CuO nanoparticles exhibited antibacterial activity; it showed the maximum activity against E.coli (18 mm). Keywords: Annona muricata, copper sulphate pentahydrate, FTIR, nanomaterials, SEM, XRD.


2016 ◽  
Vol 3 (2) ◽  
pp. 365-374 ◽  
Author(s):  
Amaraporn Wongrakpanich ◽  
Imali A. Mudunkotuwa ◽  
Sean M. Geary ◽  
Angie S. Morris ◽  
Kranti A. Mapuskar ◽  
...  

The increasing use of copper oxide (CuO) nanoparticles (NPs) in medicine and industry demands an understanding of their potential toxicities.


2014 ◽  
Vol 38 (9) ◽  
pp. 4267-4274 ◽  
Author(s):  
Manoj Trivedi ◽  
Sanjeev kumar Ujjain ◽  
Raj Kishore Sharma ◽  
Gurmeet Singh ◽  
Abhinav Kumar ◽  
...  

A cyano-bridged Cu(ii)–Cu(i) complex was synthesized and transformed into CuO nanoparticles. Their catalytic activity in C–N, C–O, and C–S cross-coupling reactions was explored.


RSC Advances ◽  
2015 ◽  
Vol 5 (127) ◽  
pp. 105200-105205 ◽  
Author(s):  
Chun-Feng Lai ◽  
Yu-Chi Wang ◽  
Chia-Lung Wu ◽  
Jia-Yu Zeng ◽  
Chia-Feng Lin

Polystyrene colloidal photonic crystal structures containing copper oxide nanoparticles present tunable structural colors, which are highly useful properties for applications.


2019 ◽  
Vol 10 (4) ◽  
pp. 2845-2848
Author(s):  
Sadhvi B ◽  
Rajeshkumar S ◽  
Anitha Roy ◽  
Lakshmi T

To synthesise Copper oxide nanoparticles and study it's characterisation using UV -viz - Spectrophotometer and TEM.  Copper oxide nanoparticles are eco-friendly, cost-efficient and diverse utilisation all over the medical field. The shape of the CuO nanoparticles are spherical, and its characterisation is done using SEM, TEM, and UV-vis techniques. The size of the nanoparticles mediated in each plant extract differs from one another. MATERIALS AND METHODS  * Collection and Preparation of Plant extracts. * Synthesis Of CuONPs * Characterization of copper nanoparticles * preparation of nanoparticles powder. The plant extract is in green colour, and the CuO nanoparticles are seen in light yellowish in colour. Uv-VIS SPECTROMETER:  The particle size ranges from 2-100nm and shape is spherical. The graph reached its peak at the wavelength of 300nm. The TEM shows spherical shape, dispersion and versatile nanoparticles. They appear to be arranged in a cluster, open and quasi-linear superstructures. This research shows that CuO nanoparticles shows excellent biocompatibility. The particles which are smaller in size shows great immunity. Hence the nanoparticles are expected to be used in future for effective drug systems.


2019 ◽  
Vol 1 (6) ◽  
pp. 2323-2336 ◽  
Author(s):  
Ahmed F. Halbus ◽  
Tommy S. Horozov ◽  
Vesselin N. Paunov

We report a strong amplification of the anti-algal and anti-yeast action of CuO nanoparticles surface-grafted with 4-hydroxyphenylboronic acid functional groups due to their covalent binding to carbohydrates on the cell membranes.


Author(s):  
Seyedeh R. Alizadeh ◽  
Mohammad A. Ebrahimzadeh

Background: Cancer is defined as an abnormal/uncontrolled cell growth that shows rapid cell division. This disease is annually recognized in more than ten million people. Nanomaterials can be used as new strategies for cancer therapy. Nanostructured devices have developed for drug delivery and controlled release and created novel anticancer chemotherapies. Nanomaterials were taken into consideration because of their new properties, containing a large specific surface area and high reactivity. Copper oxide nanoparticles (CuONPs) have potential applications in many fields like heterogeneous catalysis, antibacterial, anticancer, antioxidant, antifungal, antiviral, imaging agents, and drug delivery agents in biomedicine. CuONPs display different physical properties, such as hightemperature superconductivity, electron correlation effects, and spin dynamics. NPs can be synthesized using different methods like physical, chemical, and biological methods. Methods: Copper oxide nanoparticles (CuONPs) have been suggested for its broad usage in biomedical applications. In this review, we tried to exhibit the results of significant anticancer activity of green synthesized CuONPs and their characterization by different analytical techniques such as UV-Vis, FT-IR, XRD, EDAX, DLS, SEM, and TEM. Results: The green method for the synthesis of CuO nanoparticles as eco-friendly, cost-effective, and facile method is the more effective method. Synthesized CuONPs from this method have an appropriate size and shape. The Green synthesized CuONPs exhibited high potential against several breast cancer (AMJ-13, MCF-7, and HBL-100 cell lines), cervical cancer (HeLa), colon cancer (HCT-116), gastric cancer (human adenocarcinoma AGS cell line), lung cancer (A549), leukemia cancer, and other cancers with the main toxicity approach of increasing ROS production. Conclusion: The present review confirms the importance of green synthesized CuO nanoparticles in medical science especially cancer therapy that exhibited high activity against different cancer in both in vitro and in vivo. The main toxicity approach of CuONPs is increasing the production of reactive oxygen species (ROS). It needs to perform more studies about in vivo cancer therapy and following clinical trial testing in the future. We believe that green synthesized CuO nanoparticles can be used for the improvement of different diseases.


2019 ◽  
Vol 31 (9) ◽  
pp. 1899-1904
Author(s):  
K. Subashini ◽  
S. Prakash ◽  
V. Sujatha

There are many methods to synthesize metal and metal oxide nanoparticles. In this paper, copper oxide nanoparticles have been synthesized by solution combustion method using Brassia actinophylla i.e. Schefflera actinophylla flower extract belongs to Araliaceae family. The importance of solution combustion is one of the easy and simplest methods for the synthesis of metal oxide nanoparticle. The CuO nanoparticles were synthesized at various temperatures and the characterization has been carried out by UV, FTIR, PXRD, SEM, TEM and EDAX analysis. At lower temperature, the peak was not observed but at 400 ºC, the UV peak was observed at 340 nm. The FTIR peaks observed at 1000-500 cm-1 confirms again the presence of CuO nanoparticles. The monoclinic phase and crystalline structure of nanoparticles were revealed by PXRD pattern, by Scherrer′s method the average crystalline sizes were found to be in the range of 15 to 24 nm. The size and the shape of nanoparticles were confirmed by SEM and TEM reports. The SEM images of nanoparticles show spherical in shape and free from agglomeration. TEM analysis reports the nanoparticle sizes ranging from 2 to 20 nm. The percentage of copper (52 %) and oxygen (26 %) elements were recorded in the EDAX analysis. The study of size and stability of nanoparticles were done by zeta potential values. The antibacterial activity of CuO nanoparticles were carried out against Staphylococcus aureus and Escherichia coli bacteria's by agar well diffusion method. The MTT assay was performed in order to check the anticancer activity of CuO nanoparticles against HT-29 colon cancer cells.


RSC Advances ◽  
2020 ◽  
Vol 10 (26) ◽  
pp. 15171-15178 ◽  
Author(s):  
Somayeh Tajik ◽  
Hadi Beitollahi ◽  
Mohammad Reza Aflatoonian ◽  
Bita Mohtat ◽  
Behnaz Aflatoonian ◽  
...  

The present investigation examines a sensitive electrochemical technique to detect desipramine through Fe3O4/CuO nanoparticles.


2021 ◽  
Vol 20 (2) ◽  
pp. 1-6
Author(s):  
Fatma A. Shtewi ◽  
Wedad M. Al-Adiwish ◽  
Hamid A. Alqamoudy ◽  
Awatif A. Tarroush

Copper oxide nanoparticles are essential technology materials that are utilized as catalysts in the chemical industry, as well as in photonic and electronic devices and medical applications. Due to their applications in advanced technologies, we have concentrated on the production of CuO nanoparticles using enhanced, cost-effective, and environmentally friendly synthetic techniques. In this paper, we have presented a green synthesis technique to successfully synthesis copper oxide nanoparticles (CuO NPs) utilizing copper (II) sulfate pentahydrate (CuSO4.5H2O) as precursor salt and Mentha Piperita leaf extract as a reducing and stabilizing agent during the synthesis process. The precursor salt solution and reducing agent were mixed in a 1:1 volume ratio at 50 °C. The CuO NPs synthesized were confirmed by the characteristics Surface Plasmon Resonance (SPR) peak in the UV-visible region. Also, the optical direct band gap energy of the CuO NPs determined from the Tauc plot was 3.26 eV. The FTIR spectrum analysis confirmed existence of functional groups of polyphenols from Mentha piperita L. leaf extract, which are responsible for the reduction of Cu2+ ions and effective stabilization of CuO NPs. All the peaks observed in the XRD pattern revealed the production of CuO NPs having monoclinic structure with an average crystallite size of 42.51 nm. The surface morphology of the CuO nanoparticles was detected using SEM analysis. Further, the synthesis mechanism of CuO NPs has also been investigated.


Sign in / Sign up

Export Citation Format

Share Document