Design and synthesis of novel carbazolo–thiazoles as potential anti-mycobacterial agents using a molecular hybridization approach

RSC Advances ◽  
2014 ◽  
Vol 4 (107) ◽  
pp. 62308-62320 ◽  
Author(s):  
Mahamadhanif S. Shaikh ◽  
Mahesh B. Palkar ◽  
Harun M. Patel ◽  
Rajesh A. Rane ◽  
Wesam S. Alwan ◽  
...  

A series of novel carbazolo–thiazoles was synthesized and evaluated for in vitro anti-mycobacterial activity.

2015 ◽  
Vol 12 (5) ◽  
pp. 352-358 ◽  
Author(s):  
Sabita Nayak ◽  
Subhendu Chakroborty ◽  
Sujitlal Bhakta ◽  
Pravati Panda ◽  
Seetaram Mohapatra ◽  
...  

2020 ◽  
Vol 16 (3) ◽  
pp. 295-307
Author(s):  
Reema A. Khalaf ◽  
Dalal Masalha ◽  
Dima Sabbah

Background: Lately, diabetes has become the main health concern for millions of people around the world. Dipeptidyl peptidase-IV (DPP-IV) inhibitors have emerged as a new class of oral antidiabetic agents. Formerly, acridines, N4-sulfonamido-succinamic, phthalamic, acrylic and benzoyl acetic acid derivatives, and sulfamoyl-phenyl acid esters were designed and developed as new DPP-IV inhibitors. Objective: This study aims to develop a pharmacophore model of DPP-IV inhibitors and to evaluate phenanthridines as a novel scaffold for inhibiting DPP-IV enzyme. In addition, to assess their binding interactions with the enzyme through docking in the binding site of 4A5S (PDB). Methods: Herein, Quantum–Polarized Ligand Docking (QPLD) and ligand-based pharmacophore modeling investigations were performed. Three novel 3,8-disubstituted-6-phenyl phenanthridine derivatives 3-5 have been designed, synthesized and characterized. In vitro biological testing against DPP-IV was carried out using fluorometric assay kit. Results: QPLD study demonstrates that compounds 3-5 forms H-bond with Lys554, Trp629, and Tyr631, besides charge transfer interaction between their aromatic rings and the aromatic rings of Tyr547 and Tyr666. Moreover, they fit the three pharmacophoric point features of DPP-IV inhibitors and were proven to have in vitro DPP-IV inhibitory activity where compound 5 displayed a % inhibition of 45.4 at 100 μM concentration. Conclusion: Phenanthridines may serve as a potential lead compound for developing new DPP-IV inhibitors as a promising antidiabetic agent. Computational results suggest future structural simplification.


Author(s):  
Baswaraju Macha ◽  
Ravindra Kulkarni ◽  
Chandrakant Bagul ◽  
Anil Kumar Garige ◽  
Raghuramrao Akkinepally ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1224
Author(s):  
Stefania Marano ◽  
Cristina Minnelli ◽  
Lorenzo Ripani ◽  
Massimo Marcaccio ◽  
Emiliano Laudadio ◽  
...  

Synthetic nitrone spin-traps are being explored as therapeutic agents for the treatment of a wide range of oxidative stress-related pathologies, including but not limited to stroke, cancer, cardiovascular, and neurodegenerative diseases. In this context, increasing efforts are currently being made to the design and synthesis of new nitrone-based compounds with enhanced efficacy. The most researched nitrones are surely the ones related to α-phenyl-tert-butylnitrone (PBN) and 5,5-dimethyl-1-pyrroline N-oxide (DMPO) derivatives, which have shown to possess potent biological activity in many experimental animal models. However, more recently, nitrones with a benzoxazinic structure (3-aryl-2H-benzo[1,4]oxazin-N-oxides) have been demonstrated to have superior antioxidant activity compared to PBN. In this study, two new benzoxazinic nitrones bearing an electron-withdrawing methoxycarbonyl group on the benzo moiety (in para and meta positions respect to the nitronyl function) were synthesized. Their in vitro antioxidant activity was evaluated by two cellular-based assays (inhibition of AAPH-induced human erythrocyte hemolysis and cell death in human retinal pigmented epithelium (ARPE-19) cells) and a chemical approach by means of the α,α-diphenyl-β-picrylhydrazyl (DPPH) scavenging assay, using both electron paramagnetic resonance (EPR) spectroscopy and UV spectrophotometry. A computational approach was also used to investigate their potential primary mechanism of antioxidant action, as well as to rationalize the effect of functionalization on the nitrones reactivity toward DPPH, chosen as model radical in this study. Further insights were also gathered by exploring the nitrone electrochemical properties via cyclic voltammetry and by studying their kinetic behavior by means of EPR spectroscopy. Results showed that the introduction of an electron-withdrawing group in the phenyl moiety in the para position significantly increased the antioxidant capacity of benzoxazinic nitrones both in cell and cell-free systems. From the mechanistic point of view, the calculated results closely matched the experimental findings, strongly suggesting that the H-atom transfer (HAT) is likely to be the primary mechanism in the DPPH quenching.


2021 ◽  
Vol 215 ◽  
pp. 113271
Author(s):  
Juliane Aparecida Marinho ◽  
Daniel Silqueira Martins Guimarães ◽  
Nícolas Glanzmann ◽  
Giovana de Almeida Pimentel ◽  
Izabelle Karine da Costa Nunes ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guodong Li ◽  
Chung-Nga Ko ◽  
Dan Li ◽  
Chao Yang ◽  
Wanhe Wang ◽  
...  

AbstractImpaired wound healing and ulcer complications are a leading cause of death in diabetic patients. In this study, we report the design and synthesis of a cyclometalated iridium(III) metal complex 1a as a stabilizer of hypoxia-inducible factor-1α (HIF-1α). In vitro biophysical and cellular analyses demonstrate that this compound binds to Von Hippel-Lindau (VHL) and inhibits the VHL–HIF-1α interaction. Furthermore, the compound accumulates HIF-1α levels in cellulo and activates HIF-1α mediated gene expression, including VEGF, GLUT1, and EPO. In in vivo mouse models, the compound significantly accelerates wound closure in both normal and diabetic mice, with a greater effect being observed in the diabetic group. We also demonstrate that HIF-1α driven genes related to wound healing (i.e. HSP-90, VEGFR-1, SDF-1, SCF, and Tie-2) are increased in the wound tissue of 1a-treated diabetic mice (including, db/db, HFD/STZ and STZ models). Our study demonstrates a small molecule stabilizer of HIF-1α as a promising therapeutic agent for wound healing, and, more importantly, validates the feasibility of treating diabetic wounds by blocking the VHL and HIF-1α interaction.


2021 ◽  
Vol 19 (6) ◽  
pp. 1365-1377
Author(s):  
Arun K. Ghosh ◽  
Srinivasa Rao Allu ◽  
Guddeti Chandrashekar Reddy ◽  
Adriana Gamboa Lopez ◽  
Patricia Mendez ◽  
...  

Enantioselective syntheses of C-6 modified derivatives of herboxidiene and their biological evaluation in splicing inhibitory assay.


1999 ◽  
Vol 42 (20) ◽  
pp. 4122-4128 ◽  
Author(s):  
Adam Q. Siddiqui ◽  
Christopher McGuigan ◽  
Carlo Ballatore ◽  
Fabio Zuccotto ◽  
Ian H. Gilbert ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Vincenza Barresi ◽  
Carmela Bonaccorso ◽  
Domenico A. Cristaldi ◽  
Maria N. Modica ◽  
Nicolò Musso ◽  
...  

Recent drug discovery efforts are highly focused towards identification, design, and synthesis of small molecules as anticancer agents. With this aim, we recently designed and synthesized novel compounds with high efficacy and specificity for the treatment of breast tumors. Based on the obtained results, we constructed a Volsurf+ (VS+) model using a dataset of 59 compounds able to predict the in vitro antitumor activity against MCF-7 cancer cell line for new derivatives. In the present paper, in order to further verify the robustness of this model, we report the results of the projection of more than 150 known molecules and 9 newly synthesized compounds. We predict their activity versus MCF-7 cell line and experimentally verify the in silico results for some promising chosen molecules in two human breast cell lines, MCF-7 and MDA-MB-231.


2021 ◽  
Vol 25 (11) ◽  
pp. 104-109
Author(s):  
Gullapelli Kumaraswamy ◽  
Ravichandar Maroju ◽  
Srinivas Bandari ◽  
Gouthami Dasari ◽  
Gullapelli Sadanandam

A novel series of 2-(1-((1-substitutedphenyl-1H-1,2,3- triazol-4-yl)methoxy)ethyl)-1-((1-substituted phenyl- 1H-1,2,3-triazol-4-yl)methyl)-1H-benzo[d]imidazole (3a-j)derivatives was synthesized in moderate to high yields. The structures of all the synthesized compounds were characterized by 1HNMR, 13CNMR and Mass spectroscopic methods. The title compounds were screened for their anti-oxidant activity and anti-cancer activity. The cancer activity results reveal that the compounds 3j, 3b and 3f are showing promising activity and remaining compounds exhibited moderate activity against all the tested cancer cell lines. The anti-oxidant activity also shows that the compounds 3c and 3d have shown excellent activity and remaining compounds were also found to exhibit moderate activity against the test organisms employed.


Sign in / Sign up

Export Citation Format

Share Document