The design, synthesis, in vitro biological evaluation and molecular modeling of novel benzenesulfonate derivatives bearing chalcone moieties as potent anti-microtubulin polymerization agents

RSC Advances ◽  
2015 ◽  
Vol 5 (30) ◽  
pp. 23767-23777 ◽  
Author(s):  
Yu-Ning Shen ◽  
Lin Lin ◽  
Han-Yue Qiu ◽  
Wen-Yan Zou ◽  
Yong Qian ◽  
...  

Binding mode of compound 6b with microtubule (PDB code: 1SA0). (a) 2D diagram of the interaction between compound 6b and amino acid residues of colchicine site nearby. (b) 3D diagram of compound 6b inserted in microtubulin colchicine site.

2019 ◽  
Vol 16 (10) ◽  
pp. 837-845
Author(s):  
Sandhya Jonnala ◽  
Bhaskar Nameta ◽  
Murthy Chavali ◽  
Rajashaker Bantu ◽  
Pallavi Choudante ◽  
...  

A class of 1-((benzo[d]thiazol-2-ylamino)(phenyl)methyl)naphthalen-2-ol derivatives (4a-t) has been synthesized in good yields through a three component coupling reaction. The newly synthesized compounds were evaluated for their in vitro antiproliferative activity against five cell lines such as DU145 (human prostate cancer), MDA-MB-B231 (human breast cancer), SKOV3 (human ovarian cancer), B16-F10 (mouse skin melanoma) and CHO-K1 (Chinese hamster ovary cells), a noncancerous cell line. In vitro inhibitory activity indicates that compounds 4a, 4b, 4c, 4d, 4g, 4j, and 4o exhibited potent anti-proliferative behavior. Among them, compounds 4g, 4j and 4o found to be the most active members exhibiting remarkable growth inhibitory activity. Molecular docking facilitates to investigate the probable binding mode and key active site interactions in tubulins α and β proteins. The docking results are complementary to experimental results.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 10 ◽  
Author(s):  
Hehua Xiong ◽  
Jianxin Cheng ◽  
Jianqing Zhang ◽  
Qian Zhang ◽  
Zhen Xiao ◽  
...  

A series of 4-(pyridin-4-yloxy)benzamide derivatives containing a 1,2,3-triazole fragment were designed, synthesized, and their inhibitory activity against A549, HeLa, and MCF-7 cancer cell lines was evaluated. Most compounds exhibited moderate to potent antitumor activity against the three cell lines. Among them, the promising compound B26 showed stronger inhibitory activity than Golvatinib, with IC50 values of 3.22, 4.33, and 5.82 μM against A549, HeLa, and MCF-7 cell lines, respectively. The structure–activity relationships (SARs) demonstrated that the modification of the terminal benzene ring with a single electron-withdrawing substituent (fluorine atom) and the introduction of a pyridine amide chain with a strong hydrophilic group (morpholine) to the hinge region greatly improved the antitumor activity. Meanwhile, the optimal compound B26 showed potent biological activity in some pharmacological experiments in vitro, such as cell morphology study, dose-dependent test, kinase activity assay, and cell cycle experiment. Finally, the molecular docking simulation was performed to further explore the binding mode of compound B26 with c-Met.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2529 ◽  
Author(s):  
Rafał Kurczab ◽  
Wesam Ali ◽  
Dorota Łażewska ◽  
Magdalena Kotańska ◽  
Magdalena Jastrzębska-Więsek ◽  
...  

This study focuses on the design, synthesis, biological evaluation, and computer-aided structure-activity relationship (SAR) analysis for a novel group of aromatic triazine-methylpiperazines, with an hydantoin spacer between 1,3,5-traizine and the aromatic fragment. New compounds were synthesized and their affinities for serotonin 5-HT6, 5-HT1A, 5-HT2A, 5-HT7, and dopamine D2 receptors were evaluated. The induced-fit docking (IFD) procedure was performed to explore the 5-HT6 receptor conformation space employing two lead structures. It resulted in a consistent binding mode with the activity data. For the most active compounds found in each modification line, anti-obesity and anti-depressive-like activity in vivo, as well as “druglikeness” in vitro, were examined. Two 2-naphthyl compounds (18 and 26) were identified as the most active 5-HT6R agents within each lead modification line, respectively. The 5-(2-naphthyl)hydantoin derivative 26, the most active one in the series (5-HT6R: Ki = 87 nM), displayed also significant selectivity towards competitive G-protein coupled receptors (6–197-fold). Docking studies indicated that the hydantoin ring is stabilized by hydrogen bonding, but due to its different orientation, the hydrogen bonds form with S5.44 and N6.55 or Q6.58 for 18 and 26, respectively. Compound 26 exerted anxiolytic-like and antidepressant-like activities. Importantly, it demonstrated anti-obesity properties in animals fed palatable feed, and did not show toxic effects in vitro.


2016 ◽  
Vol 114 ◽  
pp. 318-327 ◽  
Author(s):  
Omid Khalili Arjomandi ◽  
Waleed M. Hussein ◽  
Peter Vella ◽  
Yusralina Yusof ◽  
Hanna E. Sidjabat ◽  
...  

2021 ◽  
Vol 33 (8) ◽  
pp. 1764-1770
Author(s):  
Avijit Ghosh ◽  
Abhijit Saha ◽  
Koushik Sarker ◽  
Suvasish Mishra ◽  
Subrata Sen

Thalidomide is presently approved as antiangiogenic and anticancer drug in multiple myeloma. The authors present a number of analogue-based designs of N-(o-carboxybenzoyl)-DL-glutamic acid, a major thalidomide metabolite. The compounds were synthesized and biologically tested in multiple myeloma as anticancer agents. Three compounds inhibited HUVEC proliferation at low micromolar concentrations, indicating that they are antiangiogenic and cytotoxic to human multiple myeloma RPMI8226. The active compounds were tested for antiproliferative activity on HUVECs using the dye exclusion method with trypan blue. Dimethyl-2-(quinoline-8-sulfonamido)pentanedioate (2c), in particular, inhibits VEGFR-2 phosphorylation at the Tyr-1175 residue, as determined by SDS PAGE. The binding mode of (2c) was predicted in silico in order to better understand how it interacts with essential amino acid residues in the VEGFR-2 active site. The binding energy was calculated as -161.41kcal/mol. in vitro Study of the compounds on the Vero cell line shows less toxicity towards the normal endothelial cells than the cancer cells.


Author(s):  
Reema Abu Khalaf ◽  
Shorooq Alqazaqi ◽  
Maram Aburezeq ◽  
Dima Sabbah ◽  
Ghadeer Albadawi ◽  
...  

Background: Diabetes mellitus is a chronic metabolic disorder, characterized by hyperglycemia over a prolonged period, disturbance of fat, protein and carbohydrate metabolism, resulting from defective insulin secretion, insulin action or both. Dipeptidyl peptidase-IV (DPP-IV) inhibitors are relatively a new class of oral hypoglycemic agents that reduces the deterioration of gut-derived endogenous incretin hormones that are secreted in response to food ingestion to stimulate the secretion of insulin from beta cells of pancreas. Objective: In this study, synthesis, characterization, and biological assessment of twelve novel phenanthridine sulfonamide derivatives 3a-3l as potential DPP-IV inhibitors was carried out. The target compounds were docked to study the molecular interactions and binding affinities against DPP-IV enzyme. Methods: The synthesized molecules were characterized using 1H-NMR, 13C-NMR, IR, and MS. Quantum-polarized ligand docking (QPLD) was also performed. Results: In vitro biological evaluation of compounds 3a-3l reveals comparable DPP-IV inhibitory activities ranging from 10%-46% at 100 µM concentration, where compound 3d harboring ortho-fluoro moiety exhibited the highest inhibitory activity. QPLD study shows that compounds 3a-3l accommodate DPP-IV binding site and form H-bonding with the R125, E205, E206, S209, F357, R358, K554, W629, S630, Y631, Y662, R669 and Y752 backbones. Conclusion: In conclusion, phenanthridine sulfonamides could serve as potential DPP-IV inhibitors that require further structural optimization in order to enhance their inhibitory activity.


1987 ◽  
Vol 52 (9) ◽  
pp. 2317-2325 ◽  
Author(s):  
Jan Hlaváček ◽  
Jan Pospíšek ◽  
Jiřina Slaninová ◽  
Walter Y. Chan ◽  
Victor J. Hruby

[8-Neopentylglycine]oxytocin (II) and [8-cycloleucine]oxytocin (III) were prepared by a combination of solid-phase synthesis and fragment condensation. Both analogues exhibited decreased uterotonic potency in vitro, each being about 15-30% that of oxytocin. Analogue II also displayed similarly decreased uterotonic potency in vivo and galactogogic potency. On the other hand, analogue III exhibited almost the same potency as oxytocin in the uterotonic assay in vivo and in the galactogogic assay.


1995 ◽  
Vol 60 (7) ◽  
pp. 1229-1235 ◽  
Author(s):  
Ivana Zoulíková ◽  
Ivan Svoboda ◽  
Jiří Velek ◽  
Václav Kašička ◽  
Jiřina Slaninová ◽  
...  

The vasoactive intestinal (poly)peptide (VIP) is a linear peptide containing 28 amino acid residues, whose primary structure indicates a low metabolic stability. The following VIP fragments, as potential metabolites, and their analogues were prepared by synthesis on a solid: [His(Dnp)1]VIP(1-10), VIP(11-14), [D-Arg12]VIP(11-14), [Lys(Pac)15,21,Arg20]VIP(15-22), and VIP(23-28). After purification, the peptides were characterized by amino acid analysis, mass spectrometry, RP HPLC, and capillary zone electrophoresis. In some tests, detailed examination of the biological activity of the substances in vivo and in vitro gave evidence of a low, residual activity of some fragments, viz. a depressoric activity in vivo for [His(Dnp)1]VIP(1-10) and a stimulating activity for the release of α-amylase in vitro and in vivo for [Lys(Pac)15,21,Arg20]VIP(15-22) and VIP(23-28).


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1092
Author(s):  
János András Mótyán ◽  
Márió Miczi ◽  
Stephen Oroszlan ◽  
József Tőzsér

To explore the sequence context-dependent nature of the human immunodeficiency virus type 1 (HIV-1) protease’s specificity and to provide a rationale for viral mutagenesis to study the potential role of the nucleocapsid (NC) processing in HIV-1 replication, synthetic oligopeptide substrates representing the wild-type and modified versions of the proximal cleavage site of HIV-1 NC were assayed as substrates of the HIV-1 protease (PR). The S1′ substrate binding site of HIV-1 PR was studied by an in vitro assay using KIVKCF↓NCGK decapeptides having amino acid substitutions of N17 residue of the cleavage site of the first zinc-finger domain, and in silico calculations were also performed to investigate amino acid preferences of S1′ site. Second site substitutions have also been designed to produce “revertant” substrates and convert a non-hydrolysable sequence (having glycine in place of N17) to a substrate. The specificity constants obtained for peptides containing non-charged P1′ substitutions correlated well with the residue volume, while the correlation with the calculated interaction energies showed the importance of hydrophobicity: interaction energies with polar residues were related to substantially lower specificity constants. Cleavable “revertants” showed one residue shift of cleavage position due to an alternative productive binding mode, and surprisingly, a double cleavage of a substrate was also observed. The results revealed the importance of alternative binding possibilities of substrates into the HIV-1 PR. The introduction of the “revertant” mutations into infectious virus clones may provide further insights into the potential role of NC processing in the early phase of the viral life-cycle.


Sign in / Sign up

Export Citation Format

Share Document