A novel coumarin based molecular switch for dual sensing of Zn(ii) and Cu(ii)

RSC Advances ◽  
2015 ◽  
Vol 5 (10) ◽  
pp. 7647-7653 ◽  
Author(s):  
Deblina Sarkar ◽  
Ajoy Kumar Pramanik ◽  
Tapan Kumar Mondal

New coumarin based molecular switch for Zn2+ and Cu2+ presents a tunable system comprising of two INHIBIT logic gates with Zn2+ and Cu2+ or Zn2+ and EDTA as chemical inputs. IMPLICATION logic gate is obtained with Cu2+ and EDTA as chemical inputs.

2017 ◽  
Vol 70 (12) ◽  
pp. 1254
Author(s):  
Hamid Khanmohammadi ◽  
Khatereh Rezaeian ◽  
Nafiseh Shabani

New azo-azomethine receptors, HLn (n = 1–3), have been synthesised via condensation reaction of 5-(4-X-phenyl)-azo-salicylaldehyde (X = NO2, Cl and CH3) with (4-nitrobenzylidene)hydrazine. The receptor with a p-NO2 substituent on the aromatic ring of the azo moiety (HL1) has excellent sensitivity and selectivity towards basic anions with proper discrimination between F− and AcO− or H2PO4− in DMSO–water (4 : 1). A Job’s plot displays a 1 : 1 stoichiometry between HL1 and F− alone with a detection limit of 0.737 μM for fluoride ions. The solvatochromic behaviour of HL1 was probed by studying its UV-vis spectra in four pure organic solvents of different polarities and a meaningful correlation was observed. Furthermore, HL1 was used for detection of inorganic fluoride in toothpaste. The systematic density functional theory (DFT) and time dependent-DFT calculations have been carried out to investigate the mechanism of colourimetric sensing of fluoride ion by HL1 in the gas phase and in solution. Moreover, by using F− and H+ as chemical inputs, and the absorbance as output, a INHIBIT logic gate was constructed, which exhibits ‘Write–Read–Erase–Read’ ability without obvious degradation in its optical output.


2021 ◽  
Author(s):  
Bei Li ◽  
Dongsheng Zhao ◽  
Feng Wang ◽  
Xiaoxian Zhang ◽  
Wenqian Li ◽  
...  

This review covers the latest advancements of molecular logic gates based on LMOF. The classification, design strategies, related sensing mechanisms, future developments, and challenges of LMOFs-based logic gates are discussed.


2006 ◽  
Vol 128 (15) ◽  
pp. 4950-4951 ◽  
Author(s):  
David C. Magri ◽  
Gareth J. Brown ◽  
Gareth D. McClean ◽  
A. Prasanna de Silva
Keyword(s):  

2019 ◽  
Vol 28 (10) ◽  
pp. 1950171 ◽  
Author(s):  
Vinay Kumar ◽  
Ankit Singh ◽  
Shubham Upadhyay ◽  
Binod Kumar

Power dissipation has been the prime concern for CMOS circuits. Approximate computing is a potential solution for addressing this concern as it reduces power consumption resulting in improved performance in terms of power–delay product (PDP). Decrease of power consumption in approximate computing is achieved by approximating the demand of accuracy as per the error tolerance of the system. This paper presents a new approach for designing approximate adder by introducing inexactness in the existing logic gate(s). Approximated logic gates provide flexibility in designing low power error-resilient systems depending on the error tolerance of the applications such as image processing and data mining. The proposed approximate adder (PAA) has higher accuracy than existing approximate adders with normalized mean error distance of 0.123 and 0.1256 for 16-bit and 32-bit adder, respectively, and lower PDP of 1.924E[Formula: see text]18[Formula: see text]J for 16-bit adder and 5.808E[Formula: see text]18[Formula: see text]J for 32-bit adder. The PAA also performs better than some of the recent approximate adders reported in literature in terms of layout area and delay. Performance of PAA has also been evaluated with an image processing application.


2016 ◽  
Vol 16 (5&6) ◽  
pp. 465-482
Author(s):  
Taoufik Said ◽  
Abdelhaq Chouikh ◽  
Karima Essammouni ◽  
Mohamed Bennai

We propose an effective way for realizing a three quantum logic gates (NTCP gate, NTCP-NOT gate and NTQ-NOT gate) of one qubit simultaneously controlling N target qubits based on the qubit-qubit interaction. We use the superconducting qubits in a cavity QED driven by a strong microwave field. In our scheme, the operation time of these gates is independent of the number N of qubits involved in the gate operation. These gates are insensitive to the initial state of the cavity QED and can be used to produce an analogous CNOT gate simultaneously acting on N qubits. The quantum phase gate can be realized in a time (nanosecond-scale) much smaller than decoherence time and dephasing time (microsecond-scale) in cavity QED. Numerical simulation under the influence of the gate operations shows that the scheme could be achieved efficiently within current state-of-the-art technology.


2019 ◽  
Vol 43 (32) ◽  
pp. 12734-12743 ◽  
Author(s):  
Mahesh P. Bhat ◽  
Madhuprasad Kigga ◽  
Harshith Govindappa ◽  
Pravin Patil ◽  
Ho-Young Jung ◽  
...  

A reversible chemosensor for the development of a multi-input molecular logic gate was shown.


2019 ◽  
Vol 16 (158) ◽  
pp. 20190190
Author(s):  
Matthew Egbert ◽  
Jean-Sébastien Gagnon ◽  
Juan Pérez-Mercader

It has been shown that it is possible to transform a well-stirred chemical medium into a logic gate simply by varying the chemistry’s external conditions (feed rates, lighting conditions, etc.). We extend this work, showing that the same method can be generalized to spatially extended systems. We vary the external conditions of a well-known chemical medium (a cubic autocatalytic reaction–diffusion model), so that different regions of the simulated chemistry are operating under particular conditions at particular times. In so doing, we are able to transform the initially uniform chemistry, not just into a single logic gate, but into a functionally integrated network of diverse logic gates that operate as a basic computational circuit known as a full-adder.


2018 ◽  
Vol 42 (22) ◽  
pp. 18050-18058 ◽  
Author(s):  
Juan D. Villada ◽  
Richard F. D’Vries ◽  
Mario Macías ◽  
Fabio Zuluaga ◽  
Manuel N. Chaur

A new polymorph of fluorescein hydrazone was fully characterized via single X-ray crystallography. In addition, multiple logic circuits and a Half-Adder operator were designed using the fluorescence and UV-Vis switching responses of the fluorescein compound to different metal cations and pH changes.


Sign in / Sign up

Export Citation Format

Share Document