Cationic liposomes as efficient nanocarriers for the drug delivery of an anticancer cholesterol-based ruthenium complex

2015 ◽  
Vol 3 (15) ◽  
pp. 3011-3023 ◽  
Author(s):  
Giuseppe Vitiello ◽  
Alessandra Luchini ◽  
Gerardino D'Errico ◽  
Rita Santamaria ◽  
Antonella Capuozzo ◽  
...  

Cationic nanovectors loaded with Ru-based nucleolipids exert a high growth-inhibitory activity against human cancer cells (MCF-7 (A), WiDr (B), and HeLa (C)).

2019 ◽  
Vol 33 (8) ◽  
pp. 2075-2082 ◽  
Author(s):  
Afaf Al Groshi ◽  
Hiba A. Jasim ◽  
Andrew R. Evans ◽  
Fyaz M.D. Ismail ◽  
Nicola M. Dempster ◽  
...  

Fitoterapia ◽  
2016 ◽  
Vol 109 ◽  
pp. 138-145 ◽  
Author(s):  
Alessio Cimmino ◽  
Véronique Mathieu ◽  
Marco Evidente ◽  
Marlène Ferderin ◽  
Laetitia Moreno Y Banuls ◽  
...  

Steroids ◽  
2016 ◽  
Vol 115 ◽  
pp. 90-97 ◽  
Author(s):  
Mahmoud Aghaei ◽  
Zeinab Yazdiniapour ◽  
Mustafa Ghanadian ◽  
Behzad Zolfaghari ◽  
Virginia Lanzotti ◽  
...  

Author(s):  
Anja Busemann ◽  
Ingrid Flaspohler ◽  
Xue-Quan Zhou ◽  
Claudia Schmidt ◽  
Sina K. Goetzfried ◽  
...  

AbstractThe known ruthenium complex [Ru(tpy)(bpy)(Hmte)](PF6)2 ([1](PF6)2, where tpy = 2,2’:6’,2″-terpyridine, bpy = 2,2’-bipyridine, Hmte = 2-(methylthio)ethanol) is photosubstitutionally active but non-toxic to cancer cells even upon light irradiation. In this work, the two analogs complexes [Ru(tpy)(NN)(Hmte)](PF6)2, where NN = 3,3'-biisoquinoline (i-biq, [2](PF6)2) and di(isoquinolin-3-yl)amine (i-Hdiqa, [3](PF6)2), were synthesized and their photochemistry and phototoxicity evaluated to assess their suitability as photoactivated chemotherapy (PACT) agents. The increase of the aromatic surface of [2](PF6)2 and [3](PF6)2, compared to [1](PF6)2, leads to higher lipophilicity and higher cellular uptake for the former complexes. Such improved uptake is directly correlated to the cytotoxicity of these compounds in the dark: while [2](PF6)2 and [3](PF6)2 showed low EC50 values in human cancer cells, [1](PF6)2 is not cytotoxic due to poor cellular uptake. While stable in the dark, all complexes substituted the protecting thioether ligand upon light irradiation (520 nm), with the highest photosubstitution quantum yield found for [3](PF6)2 (Φ[3] = 0.070). Compounds [2](PF6)2 and [3](PF6)2 were found both more cytotoxic after light activation than in the dark, with a photo index of 4. Considering the very low singlet oxygen quantum yields of these compounds, and the lack of cytotoxicity of the photoreleased Hmte thioether ligand, it can be concluded that the toxicity observed after light activation is due to the photoreleased aqua complexes [Ru(tpy)(NN)(OH2)]2+, and thus that [2](PF6)2 and [3](PF6)2 are promising PACT candidates. Graphic abstract


2021 ◽  
pp. 096032712110214
Author(s):  
JY Lee ◽  
HM Lim ◽  
CM Lee ◽  
S-H Park ◽  
MJ Nam

Indole-3-carbinol (I3C) is a phytochemical that exhibits growth-inhibitory activity against various cancer cells. However, there are limited studies on the effects of I3C on colon cancer cells. In this study, the growth-inhibitory activity of I3C against the human colorectal carcinoma cell line (LoVo) was examined. The results of the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide, colony formation, and cell counting assays revealed that I3C suppressed the proliferation of LoVo cells. Microscopy and wound-healing analyses revealed that I3C affected the morphology and inhibited the migration of LoVo cells, respectively. I3C induced apoptosis and DNA fragmentation as evidenced by the results of fluorescein isothiocyanate-conjugated annexin V staining and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling assay, respectively. Additionally, I3C arrested the cell cycle at the G0/G1 phase and enhanced the reactive oxygen species levels. Western blotting analysis revealed that treatment with I3C resulted in the activation of apoptotic proteins, such as poly(ADP-ribose) polymerase, caspase-3, caspase-7, caspase-9, Bax, Bim, and p53 in LoVo cells. These results indicate that I3C induces apoptosis in LoVo cells by upregulating p53, leading to the activation of Bax and caspases. Taken together, I3C exerts cytotoxic effects on LoVo cells by activating apoptosis.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1248
Author(s):  
Katarzyna Piszczatowska ◽  
Dorota Przybylska ◽  
Ewa Sikora ◽  
Grażyna Mosieniak

NADPH oxidases (NOX) are commonly expressed ROS-producing enzymes that participate in the regulation of many signaling pathways, which influence cell metabolism, survival, and proliferation. Due to their high expression in several different types of cancer it was postulated that NOX promote tumor progression, growth, and survival. Thus, the inhibition of NOX activity was considered to have therapeutic potential. One of the possible outcomes of anticancer therapy, which has recently gained much interest, is cancer cell senescence. The induction of senescence leads to prolonged inhibition of proliferation and contributes to tumor growth restriction. The aim of our studies was to investigate the influence of low, non-toxic doses of diphenyleneiodonium chloride (DPI), a potent inhibitor of flavoenzymes including NADPH oxidases, on p53-proficient and p53-deficient HCT116 human colon cancer cells and MCF-7 breast cancer cells. We demonstrated that the temporal treatment of HCT116 and MCF-7 cancer cells (both p53 wild-type) with DPI caused induction of senescence, that was correlated with decreased level of ROS and upregulation of p53/p21 proteins. On the contrary, in the case of p53−/− HCT116 cells, apoptosis was shown to be the prevailing effect of DPI treatment. Thus, our studies provided a proof that inhibiting ROS production, and by this means influencing ROS sensitive pathways, remains an alternative strategy to facilitate so called therapy-induced senescence in cancers.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 377
Author(s):  
Iván González-Chavarría ◽  
Felix Duprat ◽  
Francisco J. Roa ◽  
Nery Jara ◽  
Jorge R. Toledo ◽  
...  

Maytenus disticha (Hook F.), belonging to the Celastraceae family, is an evergreen shrub, native of the central southern mountains of Chile. Previous studies demonstrated that the total extract of M. disticha (MD) has an acetylcholinesterase inhibitory activity along with growth regulatory and insecticidal activities. β-Dihydroagarofurans sesquiterpenes are the most active components in the plant. However, its activity in cancer has not been analyzed yet. Here, we demonstrate that MD has a cytotoxic activity on breast (MCF-7), lung (PC9), and prostate (C4-2B) human cancer cells with an IC50 (µg/mL) of 40, 4.7, and 5 µg/mL, respectively, an increasing Bax/Bcl2 ratio, and inducing a mitochondrial membrane depolarization. The β-dihydroagarofuran-type sesquiterpene (MD-6), dihydromyricetin (MD-9), and dihydromyricetin-3-O-β-glucoside (MD-10) were isolated as the major compounds from MD extracts. From these compounds, only MD-6 showed cytotoxic activity on MCF-7, PC9, and C4-2B with an IC50 of 31.02, 17.58, and 42.19 µM, respectively. Furthermore, the MD-6 increases cell ROS generation, and MD and MD-6 induce a mitochondrial superoxide generation and apoptosis on MCF-7, PC9, and C4-2B, which suggests that the cytotoxic effect of MD is mediated in part by the β-dihydroagarofuran-type that induces apoptosis by a mitochondrial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document