Carbon nanotube based elastomer composites – an approach towards multifunctional materials

2014 ◽  
Vol 2 (40) ◽  
pp. 8446-8485 ◽  
Author(s):  
Deepalekshmi Ponnamma ◽  
Kishor Kumar Sadasivuni ◽  
Yves Grohens ◽  
Qipeng Guo ◽  
Sabu Thomas

The current study focuses on giving a basic understanding of tubular graphene sheets or carbon nanotubes (CNTs) and points towards their role in fabricating elastomer composites.

2016 ◽  
Vol 89 (2) ◽  
pp. 306-315 ◽  
Author(s):  
Deepalekshmi Ponnamma ◽  
Kishor Kumar Sadasivuni ◽  
Sabu Thomas ◽  
Igor Krupa ◽  
Mariam Al-Ali AlMa'adeed

ABSTRACT Oil spills due to either accidents or deliberate oily discharges cause severe pollution and can be thwarted if proper detection facilities are applied. This article reports new flexible oil sensor capabilities of three different elastomer (natural rubber, butyl rubber, and styrene–isoprene–styrene copolymer) composites of multiwalled carbon nanotubes (MWCNTs). We highlight the sensor manufacturing by simple means of solution mixing, and the uniform dispersion of MWCNTs in the elastomers is substantiated with the help of morphology and structural analyses. Electrical percolation and semiconductor characteristics were also examined for composites. The developed materials show better oil sensing above the percolation level, and the filler–polymer interfacial interaction is the main factor regulating the oil-detecting capability. The efficiency of the sensors was also tested after many instances of bending.


2013 ◽  
Vol 844 ◽  
pp. 322-325
Author(s):  
Claudia Kummerlöwe ◽  
Norbert Vennemann ◽  
Achim Siebert

Composites of multi walled carbon nanotubes and several synthetic rubbers as well as natural rubber were investigated regarding their mechanical properties, electrical and thermal conductivity and vulcanization properties. The composites were prepared by a melt mixing process. Induction and cure times obtained from rheometer curves exhibited a considerable decrease with increasing filler loading and kinetic investigations using a first order model indicated a distinct reduction of the activation energy. An examination of the crosslink density by equilibrium swelling and hysteresis tensile testing showed a strong increase with carbon nanotube content. The analysis of the thermal conductivity revealed the presents of a considerable interfacial thermal resistance which restricts the contribution of carbon nanotubes to the composite thermal conductivity. The electrical percolation thresholds of the melt compounded composites depend on processing procedure as well as elastomer and CNT type. At least a partial exfoliation of the CNT aggregates was reached.


2003 ◽  
Vol 772 ◽  
Author(s):  
Masakazu Muroyama ◽  
Kazuto Kimura ◽  
Takao Yagi ◽  
Ichiro Saito

AbstractA carbon nanotube triode using Helicon Plasma-enhanced CVD with electroplated NiCo catalyst has been successfully fabricated. Isolated NiCo based metal catalyst was deposited at the bottom of the cathode wells by electroplating methods to control the density of carbon nanotubes and also reduce the activation energy of its growth. Helicon Plasma-enhanced CVD (HPECVD) has been used to deposit nanotubes at 400°C. Vertically aligned carbon nanotubes were then grown selectively on the electroplated Ni catalyst. Field emission measurements were performed with a triode structure. At a cathode to anode gap of 1.1mm, the turn on voltage for the gate was 170V.


2021 ◽  
Author(s):  
Manasi Doshi ◽  
Eric Paul Fahrenthold

Explosives and hazardous gas sensing using carbon nanotube (CNT) based sensors has been a focus of considerable experimental research. The simplest sensors have employed a chemiresistive sensing mechanism, and rely...


Author(s):  
Mohammad Hamza Kirmani ◽  
Geeta Sachdeva ◽  
Ravindra Pandey ◽  
Gregory M. Odegard ◽  
Richard Liang ◽  
...  

2007 ◽  
Vol 124-126 ◽  
pp. 1309-1312
Author(s):  
Nguyen Duc Hoa ◽  
Nguyen Van Quy ◽  
Gyu Seok Choi ◽  
You Suk Cho ◽  
Se Young Jeong ◽  
...  

A new type of gas sensor was realized by directly depositing carbon nanotube on nano channels of the anodic alumina oxide (AAO) fabricated on p-type silicon substrate. The carbon nanotubes were synthesized by thermal chemical vapor deposition at a very high temperature of 1200 oC to improve the crystallinity. The device fabrication process was also developed. The contact of carbon nanotubes and p-type Si substrate showed a Schottky behavior, and the Schottky barrier height increased with exposure to gases while the overall conductivity decreased. The sensors showed fast response and recovery to ammonia gas upon the filling (400 mTorr) and evacuation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1875
Author(s):  
Alexander Yu. Gerasimenko ◽  
Artem V. Kuksin ◽  
Yury P. Shaman ◽  
Evgeny P. Kitsyuk ◽  
Yulia O. Fedorova ◽  
...  

A technology for the formation of electrically conductive nanostructures from single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT), and their hybrids with reduced graphene oxide (rGO) on Si substrate has been developed. Under the action of single pulses of laser irradiation, nanowelding of SWCNT and MWCNT nanotubes with graphene sheets was obtained. Dependences of electromagnetic wave absorption by films of short and long nanotubes with subnanometer and nanometer diameters on wavelength are calculated. It was determined from dependences that absorption maxima of various types of nanotubes are in the wavelength region of about 266 nm. It was found that contact between nanotube and graphene was formed in time up to 400 fs. Formation of networks of SWCNT/MWCNT and their hybrids with rGO at threshold energy densities of 0.3/0.5 J/cm2 is shown. With an increase in energy density above the threshold value, formation of amorphous carbon nanoinclusions on the surface of nanotubes was demonstrated. For all films, except the MWCNT film, an increase in defectiveness after laser irradiation was obtained, which is associated with appearance of C–C bonds with neighboring nanotubes or graphene sheets. CNTs played the role of bridges connecting graphene sheets. Laser-synthesized hybrid nanostructures demonstrated the highest hardness compared to pure nanotubes. Maximum hardness (52.7 GPa) was obtained for MWCNT/rGO topology. Regularity of an increase in electrical conductivity of nanostructures after laser irradiation has been established for films made of all nanomaterials. Hybrid structures of nanotubes and graphene sheets have the highest electrical conductivity compared to networks of pure nanotubes. Maximum electrical conductivity was obtained for MWCNT/rGO hybrid structure (~22.6 kS/m). Networks of nanotubes and CNT/rGO hybrids can be used to form strong electrically conductive interconnections in nanoelectronics, as well as to create components for flexible electronics and bioelectronics, including intelligent wearable devices (IWDs).


Sign in / Sign up

Export Citation Format

Share Document