Self-assembly of various silver nanocrystals on PmPD/PAN nanofibers as a high-performance 3D SERS substrate

The Analyst ◽  
2015 ◽  
Vol 140 (16) ◽  
pp. 5707-5715 ◽  
Author(s):  
Peng Jia ◽  
Bing Cao ◽  
Jianqiang Wang ◽  
Jin Qu ◽  
Yuxuan Liu ◽  
...  

The AgNCs (AgNPs, AgNTs and AgNDs) decorated-PmPD/PAN nanofiber mats were obtained as highly sensitive 3D SERS substrates.

Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 384 ◽  
Author(s):  
Zhiliang Zhang ◽  
Tiantian Si ◽  
Jun Liu ◽  
Guowei Zhou

The rapid sampling and efficient collection of target molecules from a real-world surface is fairly crucial for surface-enhanced Raman scattering (SERS) to detect trace pesticide residues in the environment and in agriculture fields. In this work, a versatile approach was exploited to fabricate a flexible SERS substrate for highly sensitive detection of carbaryl pesticides, using in-situ grown silver nanoparticles (AgNPs)on non-woven (NW) fabric surfaces based on mussel-inspired polydopamine (PDA) molecules. The obtained NW@PDA@AgNPs fabrics showed extremely sensitive and reproducible SERS signals toward crystal violet (CV) molecules, and the detection limit was as low as 1.0 × 10−12 M. More importantly, these NW@PDA@AgNPs fabrics could be directly utilized as flexible SERS substrates for the rapid extraction and detection of trace carbaryl pesticides from various fruit surfaces through a simple swabbing approach. It was identified that the detection limits of carbaryl residues from apple, orange, and banana surfaces were approximately decreased to 4.02 × 10−12, 6.04 × 10−12, and 5.03 × 10−12 g, respectively, demonstrating high sensitivity and superior reliability. These flexible substrates could not only drastically increase the collection efficiency from multifarious irregular-shaped matrices, but also greatly enhance analytical sensitivity and reliability for carbaryl pesticides. The fabricated flexible and multifunctional SERS substrates would have great potential to trace pesticide residue detection in the environment and bioscience fields.


RSC Advances ◽  
2016 ◽  
Vol 6 (71) ◽  
pp. 67204-67211 ◽  
Author(s):  
Chih-Wei Chiu ◽  
Po-Hsien Lin

A novel flexible, freestanding, large-scale, and disposable SERS substrate of core/shell Ag@silicate and poly(vinyl alcohol) spherical nanohybrids, fabricated by coaxial electrospray, allows for the high-efficiency detection of adenine from DNA.


RSC Advances ◽  
2019 ◽  
Vol 9 (38) ◽  
pp. 21771-21776 ◽  
Author(s):  
Nan Zhao ◽  
Hefu Li ◽  
Cunwei Tian ◽  
Yanru Xie ◽  
Zhenbao Feng ◽  
...  

Three-dimensional (3D) plasmonic structures have been intensively investigated as high performance surface enhanced Raman scattering (SERS) substrates.


2019 ◽  
Vol 10 ◽  
pp. 2483-2496
Author(s):  
Jingran Zhang ◽  
Tianqi Jia ◽  
Yongda Yan ◽  
Li Wang ◽  
Peng Miao ◽  
...  

Nanostructures have been widely employed in surface-enhanced Raman scattering (SERS) substrates. Recently, in order to obtain a higher enhancement factor at a lower detection limit, hierarchical structures, including nanostructures and nanoparticles, appear to be viable SERS substrate candidates. Here we describe a novel method integrating the nanoindentation process and chemical redox reaction to machine a hierarchical SERS substrate. The micro/nanostructures are first formed on a Cu(110) plane and then Ag nanoparticles are generated on the structured copper surface. The effect of the indentation process parameters and the corrosion time in the AgNO3 solution on the Raman intensities of the SERS substrate with hierarchical structures are experimentally studied. The intensity and distribution of the electric field of single and multiple Ag nanoparticles on the surface of a plane and with multiple micro/nanostructures are studied with COMSOL software. The feasibility of the hierarchical SERS substrate is verified using R6G molecules. Finally, the enhancement factor using malachite green molecules was found to reach 5.089 × 109, which demonstrates that the production method is a simple, reproducible and low-cost method for machining a highly sensitive, hierarchical SERS substrate.


2021 ◽  
Author(s):  
Jun Dong ◽  
Yan Wang ◽  
Qianying Wang ◽  
Yi Cao ◽  
qingyan han ◽  
...  

Abstract Surface-enhanced Raman scattering (SERS) is recognized as one of the most favored techniques for enhancing Raman signals. The morphology of the SERS substrate profoundly affects molecular Raman spectra. This study aimed to construct a ring-mounted nanostructured substrate via liquid–liquid two-phase self-assembly (LLSA) incorporated with anodic aluminum oxide (AAO) membrane transfer techniques. High-density nanoparticles (NPs) assembled on AAO membranes were ascribed to reduce the diameters of the nanopores, with Au–Ag alloy NPs to regulate the dielectric constant so as to reveal the local surface plasmon resonance tunability. SERS engineered in this way allowed for the fabrication of a ring-mounted nanostructured substrate where the distribution density of NPs and dielectric constant could be independently fine-tuned. High SERS activity of the substrate was revealed by detecting the enhanced factor of crystal violet and rhodamine 6G molecules, which was up to 1.56 × 106. Moreover, SERS of thiram target molecules confirmed the supersensitivity and repeatability of the substrate as a practical application. The results of this study manifested a low-cost but high-efficiency ring-mounted nanostructured SERS substrate that might be suitable in many fields, including biosensing, medical research, environmental monitoring, and optoelectronics.


RSC Advances ◽  
2015 ◽  
Vol 5 (105) ◽  
pp. 86522-86528 ◽  
Author(s):  
Chih-Wei Chiu ◽  
Po-Hsien Lin

The use of self-assembled novel flower-like microstructures as SERS substrates allowed high-efficiency detection of adenine molecules from DNA.


RSC Advances ◽  
2015 ◽  
Vol 5 (128) ◽  
pp. 105820-105824 ◽  
Author(s):  
Jiaolai Jiang ◽  
Shaofei Wang ◽  
Haoxi Wu ◽  
Jing Zhang ◽  
Haibo Li ◽  
...  

A facile and rapid self-assembly method for fabricating a high performance SERS substrate was reported here by using ascorbic acid as an active reagent.


Nanophotonics ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Xiaofei Zhao ◽  
Chundong Liu ◽  
Jing Yu ◽  
Zhen Li ◽  
Lu Liu ◽  
...  

AbstractCavity array, with excellent optical capture capability, has received increasing attention for the surface-enhanced Raman spectroscopy (SERS)-active substrates. Here, we proposed molybdenum disulfide (MoS2) nanocavities growing on pyramid Si (PSi) composed of in situ reduced Au nanoparticles (AuNPs), which can form the multiscale cavities (MSCs), and is facile for the couple of the plasmon. We demonstrated that the PSi/MoS2/Au MSCs can serve as highly sensitive, uniform, and stable SERS substrates for rhodamine 6G (R6G), crystal violet, and adenosine triphosphate detection, benefiting from the synergistic effect of the enhanced light trapping and the effective plasmonic couple. The couple of the plasmon in the MSCs is evidently proved by finite-difference time domain simulation, showing the strong electromagnetic field is located around the cavity wall. Moreover, the excellent hydrophobicity of the PSi/MoS2/AuNPs substrate endows it with the ability for the directional monitoring of organic pollutant in a mixture of oil and water. Finally, we demonstrated the MSCs with outstanding photocatalytic performance could achieve the renewable utilization by self-cleaning, which was attributed to the fast electron transfer and effective light absorption. The proposed PSi/MoS2/AuNPs MSC represents a robust mean using the plasmonic metal/semiconductor heterostructure for high-performance SERS sensors and photodegradation.


2019 ◽  
Vol 7 (21) ◽  
pp. 6308-6316 ◽  
Author(s):  
Zelio Fusco ◽  
Renheng Bo ◽  
Yuling Wang ◽  
Nunzio Motta ◽  
Hongjun Chen ◽  
...  

A thermophoretically driven Au aerosol deposition process is used for the self-assembly of thin films consisting of plasmonic nano-islands (NIs) with a controllable and highly reproducible degree of disorder resulting in long-range periodicity with self-similar properties and stochastically distributed hot-spots, benefitting their applications as SERS substrates.


Sign in / Sign up

Export Citation Format

Share Document