Ultrathin carbon layer coated MoO2 nanoparticles for high-performance near-infrared photothermal cancer therapy

2015 ◽  
Vol 51 (49) ◽  
pp. 10054-10057 ◽  
Author(s):  
Qin Liu ◽  
Chunyang Sun ◽  
Qun He ◽  
Daobin Liu ◽  
Adnan Khalil ◽  
...  

Uniform MoO2 nanoparticles coated with ultrathin carbon layers, synthesized by a solvothermal method, were demonstrated as a promising NIR photothermal agent by in vitro and in vivo tests.

2020 ◽  
Vol 27 (15) ◽  
pp. 2494-2513 ◽  
Author(s):  
João A. Oshiro-Júnior ◽  
Camila Rodero ◽  
Gilmar Hanck-Silva ◽  
Mariana R. Sato ◽  
Renata Carolina Alves ◽  
...  

Stimuli-responsive drug-delivery nanocarriers (DDNs) have been increasingly reported in the literature as an alternative for breast cancer therapy. Stimuli-responsive DDNs are developed with materials that present a drastic change in response to intrinsic/chemical stimuli (pH, redox and enzyme) and extrinsic/physical stimuli (ultrasound, Near-infrared (NIR) light, magnetic field and electric current). In addition, they can be developed using different strategies, such as functionalization with signaling molecules, leading to several advantages, such as (a) improved pharmaceutical properties of liposoluble drugs, (b) selectivity with the tumor tissue decreasing systemic toxic effects, (c) controlled release upon different stimuli, which are all fundamental to improving the therapeutic effectiveness of breast cancer treatment. Therefore, this review summarizes the use of stimuli-responsive DDNs in the treatment of breast cancer. We have divided the discussions into intrinsic and extrinsic stimuli and have separately detailed them regarding their definitions and applications. Finally, we aim to address the ability of these stimuli-responsive DDNs to control the drug release in vitro and the influence on breast cancer therapy, evaluated in vivo in breast cancer models.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 507 ◽  
Author(s):  
Liu ◽  
Gao ◽  
Zhou ◽  
Nie ◽  
Cheng ◽  
...  

Abstract: The development of versatile nanoscale drug delivery systems that integrate with multiple therapeutic agents or methods and improve the efficacy of cancer therapy is urgently required. To satisfy this demand, polydopamine (PDA)-modified polymeric nanoplatforms were constructed for the dual loading of chemotherapeutic drugs. The hydrophobic anticancer drug docetaxel (DTX) was loaded into the polymeric nanoparticles (NPs) which were fabricated from the star-shaped copolymer CA-PLGA. Then DTX-loaded NPs were coated with PDA, followed by conjugation of polyelethyl glycol (PEG)-modified targeting ligand aptamer AS1411(Apt) and adsorption of the hydrophilic anticancer drug doxorubicin (DOX). This “four-in-one” nanoplatform, referred to as DTX/NPs@PDA/DOX-PEG-Apt, demonstrated high near-infrared photothermal conversion efficiency and exhibited pH and thermo-responsive drug release behavior. Furthermore, it was able to specifically target MCF-7 human breast carcinoma cells and provide synergistic chemo-photothermal therapy to further improve the anticancer effect both in vitro and in vivo, providing a novel promising strategy for cancer therapy.


2014 ◽  
Vol 5 ◽  
pp. 313-322 ◽  
Author(s):  
Tingjun Lei ◽  
Alicia Fernandez-Fernandez ◽  
Romila Manchanda ◽  
Yen-Chih Huang ◽  
Anthony J McGoron

Background: In the past decade, researchers have focused on developing new biomaterials for cancer therapy that combine imaging and therapeutic agents. In our study, we use a new biocompatible and biodegradable polymer, termed poly(glycerol malate co-dodecanedioate) (PGMD), for the synthesis of nanoparticles (NPs) and loading of near-infrared (NIR) dyes. IR820 was chosen for the purpose of imaging and hyperthermia (HT). HT is currently used in clinical trials for cancer therapy in combination with radiotherapy and chemotherapy. One of the potential problems of HT is that it can up-regulate hypoxia-inducible factor-1 (HIF-1) expression and enhance vascular endothelial growth factor (VEGF) secretion. Results: We explored cellular response after rapid, short-term and low thermal dose laser-IR820-PGMD NPs (laser/NPs) induced-heating, and compared it to slow, long-term and high thermal dose heating by a cell incubator. The expression levels of the reactive oxygen species (ROS), HIF-1 and VEGF following the two different modes of heating. The cytotoxicity of NPs after laser/NP HT resulted in higher cell killing compared to incubator HT. The ROS level was highly elevated under incubator HT, but remained at the baseline level under the laser/NP HT. Our results show that elevated ROS expression inside the cells could result in the promotion of HIF-1 expression after incubator induced-HT. The VEGF secretion was also significantly enhanced compared to laser/NP HT, possibly due to the promotion of HIF-1. In vitro cell imaging and in vivo healthy mice imaging showed that IR820-PGMD NPs can be used for optical imaging. Conclusion: IR820-PGMD NPs were developed and used for both imaging and therapy purposes. Rapid and short-term laser/NP HT, with a low thermal dose, does not up-regulate HIF-1 and VEGF expression, whereas slow and long term incubator HT, with a high thermal dose, enhances the expression of both transcription factors.


2020 ◽  
Vol 10 (8) ◽  
pp. 1204-1212
Author(s):  
Tengbiao Ma ◽  
Xue Guan ◽  
Dan Wu ◽  
Xinxia Wang ◽  
Yali Cui

For cancer diagnosis and therapeutics, we adopted a novel strategy and established a new approach by using transarterial administration of gold nanoshells on silica nanorattles (GSNs) for multifunctional biomedical application. The GSNs exhibit high biocompatibility and stability in vitro and in vivo. It was found that an arterial administration of GSNs showed six-fold higher efficiency than the venous method. In this study, we found that the system of using GSNs had a high near-infrared (NIR) absorbance and excellent photothermal transfer capability for cancer photothermal therapy (PTT) efficiently. More importantly, the GSN treatment method, involving interventional procedures and nanomaterials, showed great potential to promote tumor apoptosis in all research. Using CT imaging technology, we monitored the volume change of tumors and confirmed cell apoptosis by TUNEL staining and immunohistochemistry. Furthermore, arterial administration of GSNs combined with NIR irradiation was established, and the related proteins was examined by Western blotting. Caspase-3 and 9 showed an high expression level within tumor tissues. Finally, a comparative study of biodistribution and safety was performed in vivo, and the biocompatibility was carefully evaluated. This GSN-based method was ultimately shown to be a promising approach for cancer therapy.


2019 ◽  
Vol 43 (22) ◽  
pp. 8620-8626
Author(s):  
Chengkang Su ◽  
Huiqing Zhong ◽  
Haolin Chen ◽  
Yanxian Guo ◽  
Zhouyi Guo ◽  
...  

Black phosphorus–polypyrrole nanosheets with superimposed NIR absorption have been fabricated as the novel nanotherapeutic agent for enhanced NIR photothermal cancer therapy in vitro and in vivo.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Haixian Zhang ◽  
Feifei Song ◽  
Caihong Dong ◽  
Luodan Yu ◽  
Cai Chang ◽  
...  

Abstract Background In comparison with traditional therapeutics, it is highly preferable to develop a combinatorial therapeutic modality for nanomedicine and photothermal hyperthermia to achieve safe, efficient, and localized delivery of chemotherapeutic drugs into tumor tissues and exert tumor-activated nanotherapy. Biocompatible organic–inorganic hybrid hollow mesoporous organosilica nanoparticles (HMONs) have shown high performance in molecular imaging and drug delivery as compared to other inorganic nanosystems. Disulfiram (DSF), an alcohol-abuse drug, can act as a chemotherapeutic agent according to its recently reported effectiveness for cancer chemotherapy, whose activity strongly depends on copper ions. Results In this work, a therapeutic construction with high biosafety and efficiency was proposed and developed for synergistic tumor-activated and photothermal-augmented chemotherapy in breast tumor eradication both in vitro and in vivo. The proposed strategy is based on the employment of HMONs to integrate ultrasmall photothermal CuS particles onto the surface of the organosilica and the molecular drug DSF inside the mesopores and hollow interior. The ultrasmall CuS acted as both photothermal agent under near-infrared (NIR) irradiation for photonic tumor hyperthermia and Cu2+ self-supplier in an acidic tumor microenvironment to activate the nontoxic DSF drug into a highly toxic diethyldithiocarbamate (DTC)-copper complex for enhanced DSF chemotherapy, which effectively achieved a remarkable synergistic in-situ anticancer outcome with minimal side effects. Conclusion This work provides a representative paradigm on the engineering of combinatorial therapeutic nanomedicine with both exogenous response for photonic tumor ablation and endogenous tumor microenvironment-responsive in-situ toxicity activation of a molecular drug (DSF) for augmented tumor chemotherapy. Graphical abstract


2012 ◽  
Vol 48 (71) ◽  
pp. 8934 ◽  
Author(s):  
Mei Chen ◽  
Xiaoliang Fang ◽  
Shaoheng Tang ◽  
Nanfeng Zheng

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hongzhi Hu ◽  
Wenbo Yang ◽  
Zihui Liang ◽  
Zezhu Zhou ◽  
Qingcheng Song ◽  
...  

Abstract Background Despite advances of surgery and neoadjuvant chemotherapy during the past few decades, the therapeutic efficacy of current therapeutic protocol for osteosarcoma (OS) is still seriously compromised by multi-drug resistance and severe side effects. Amplification of intracellular oxidative stress is considered as an effective strategy to induce cancer cell death. The purpose of this study was to develop a novel strategy that can amplify the intracellular oxidative stress for synergistic cascade cancer therapy. Methods and results A novel nanocomposite, composed of folic acid (FA) modified mesoporous silica–coated gold nanostar (GNS@MSNs-FA) and traditional Chinese medicine lycorine (Ly), was rationally designed and developed. Under near-infrared (NIR) irradiation, the obtained GNS@MSNs-FA/Ly could promote a high level of ROS production via inducing mitochondrial dysfunction and potent endoplasmic reticulum (ER) stress. Moreover, glutathione (GSH) depletion during ER stress could reduce ROS scavenging and further enable efficient amplification of intracellular oxidative stress. Both in vitro and in vivo studies demonstrated that GNS@MSNs-FA/Ly coupled with NIR irradiation exhibited excellent antitumor efficacy without noticeable toxicity in MNNG/HOS tumor-bearing mice. Conclusion All these results demonstrated that GNS@MSNs-FA/Ly coupled with NIR irradiation could dramatically amplify the intra-tumoral oxidative stress, exhibiting excellent antitumor ability without obvious systemic toxicity. Taken together, this promising strategy provides a new avenue for the effective cancer synergetic therapy and future clinical translation.


2019 ◽  
Vol 5 (4) ◽  
pp. 270-277 ◽  
Author(s):  
Vijay Kumar ◽  
Simranjeet Singh ◽  
Ragini Bhadouria ◽  
Ravindra Singh ◽  
Om Prakash

Holoptelea integrifolia Roxb. Planch (HI) has been used to treat various ailments including obesity, osteoarthritis, arthritis, inflammation, anemia, diabetes etc. To review the major phytochemicals and medicinal properties of HI, exhaustive bibliographic research was designed by means of various scientific search engines and databases. Only 12 phytochemicals have been reported including biologically active compounds like betulin, betulinic acid, epifriedlin, octacosanol, Friedlin, Holoptelin-A and Holoptelin-B. Analytical methods including the Thin Layer Chromatography (TLC), High-Performance Thin Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography With Mass Spectral (LC-MS) analysis have been used to analyze the HI. From medicinal potency point of view, these phytochemicals have a wide range of pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, and anti-tumor. In the current review, it has been noticed that the mechanism of action of HI with biomolecules has not been fully explored. Pharmacology and toxicological studies are very few. This seems a huge literature gap to be fulfilled through the detailed in-vivo and in-vitro studies.


Sign in / Sign up

Export Citation Format

Share Document