Tuning the Schottky barrier height of the Pd–MoS2 contact by different strains

2015 ◽  
Vol 17 (40) ◽  
pp. 27088-27093 ◽  
Author(s):  
Biao Liu ◽  
Li-Juan Wu ◽  
Yu-Qing Zhao ◽  
Ling-Zhi Wang ◽  
Meng-Qiu Cai

The structures and electronic properties of the Pd–MoS2 contact are investigated using density functional calculations under different strains.

Nanoscale ◽  
2021 ◽  
Author(s):  
Maria Javaid ◽  
Patrick David Taylor ◽  
Sherif Abdulkader Tawfik ◽  
Michelle Jeanette Sapountzis Spencer

The ferroelectric material In2Se3 is currently of significant interest due to its built-in polarisation characteristics that can significantly modulate its electronic properties. Here we employ density functional theory to determine...


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1674 ◽  
Author(s):  
Xuefei Liu ◽  
Zhaofu Zhang ◽  
Zijiang Luo ◽  
Bing Lv ◽  
Zhao Ding

The structural and electronic properties of graphene/graphene-like Aluminum Nitrides monolayer (Gr/g-AlN) heterojunction with and without vacancies are systematically investigated by first-principles calculation. The results prove that Gr/g-AlN with nitrogen-vacancy (Gr/g-AlN-VN) is energy favorable with the smallest sublayer distance and binding energy. Gr/g-AlN-VN is nonmagnetic, like that in the pristine Gr/g-AlN structure, but it is different from the situation of g-AlN-VN, where a magnetic moment of 1 μB is observed. The metallic graphene acts as an electron acceptor in the Gr/g-AlN-VN and donor in Gr/g-AlN and Gr/g-AlN-VAl contacts. Schottky barrier height Φ B , n by traditional (hybrid) functional of Gr/g-AlN, Gr/g-AlN-VAl, and Gr/g-AlN-VN are calculated as 2.35 (3.69), 2.77 (3.23), and 1.10 (0.98) eV, respectively, showing that vacancies can effectively modulate the Schottky barrier height. Additionally, the biaxial strain engineering is conducted to modulate the heterojunction contact properties. The pristine Gr/g-AlN, which is a p-type Schottky contact under strain-free condition, would transform to an n-type contact when 10% compressive strain is applied. Ohmic contact is formed under a larger tensile strain. Furthermore, 7.5% tensile strain would tune the Gr/g-AlN-VN from n-type to p-type contact. These plentiful tunable natures would provide valuable guidance in fabricating nanoelectronics devices based on Gr/g-AlN heterojunctions.


2016 ◽  
Vol 7 ◽  
pp. 1800-1814 ◽  
Author(s):  
Ivan Shtepliuk ◽  
Jens Eriksson ◽  
Volodymyr Khranovskyy ◽  
Tihomir Iakimov ◽  
Anita Lloyd Spetz ◽  
...  

A vertical diode structure comprising homogeneous monolayer epitaxial graphene on silicon carbide is fabricated by thermal decomposition of a Si-face 4H-SiC wafer in argon atmosphere. Current–voltage characteristics of the graphene/SiC Schottky junction were analyzed by applying the thermionic-emission theory. Extracted values of the Schottky barrier height and the ideality factor are found to be 0.4879 ± 0.013 eV and 1.01803 ± 0.0049, respectively. Deviations of these parameters from average values are smaller than those of previously observed literature data, thereby implying uniformity of the Schottky barrier height over the whole diode area, a stable rectifying behaviour and a good quality of ohmic palladium–graphene contacts. Keeping in mind the strong sensitivity of graphene to analytes we propose the possibility to use the graphene/SiC Schottky diode as a sensing platform for the recognition of toxic heavy metals. Using density functional theory (DFT) calculations we gain insight into the nature of the interaction of cadmium, mercury and lead with graphene as well as estimate the work function and the Schottky barrier height of the graphene/SiC structure before and after applying heavy metals to the sensing material. A shift of the I–V characteristics of the graphene/SiC-based sensor has been proposed as an indicator of presence of the heavy metals. Since the calculations suggested the strongest charge transfer between Pb and graphene, the proposed sensing platform was characterized by good selectivity towards lead atoms and slight interferences from cadmium and mercury. The dependence of the sensitivity parameters on the concentration of Cd, Hg and Pb is studied and discussed.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1794
Author(s):  
Xuefei Liu ◽  
Zhaocai Zhang ◽  
Bing Lv ◽  
Zhao Ding ◽  
Zijiang Luo

Graphene-based van der Waals (vdW) heterojunction plays an important role in next-generation optoelectronics, nanoelectronics, and spintronics devices. The tunability of the Schottky barrier height (SBH) is beneficial for improving device performance, especially for the contact resistance. Herein, we investigated the electronic structure and interfacial characteristics of the graphene/AlN interface based on density functional theory. The results show that the intrinsic electronic properties of graphene changed slightly after contact. In contrast, the valence band maximum of AlN changed significantly due to the hybridization of Cp and Np orbital electrons. The Bader charge analysis showed that the electrons would transfer from AlN to graphene, implying that graphene would induce acceptor states. Additionally, the Schottky contact nature can be effectively tuned by the external electric field, and it will be tuned from the p-type into n-type once the electric field is larger than about 0.5 V/Å. Furthermore, the optical absorption of graphene/AlN is enhanced after contact. Our findings imply that the SBH is controllable, which is highly desirable in nano-electronic devices.


2006 ◽  
Vol 980 ◽  
Author(s):  
Manish K. Niranjan ◽  
Leonard Kleinman ◽  
Alexander A. Demkov

AbstractWe present a theoretical study of the electronic structure, surface energies and work functions of orthorhombic Pt monosilicide and germanides of Pt, Ni, Y and Hf within the framework of density functional theory (DFT). Our calculated bulk structures are within 1-2% of reported experimental values. Calculated work functsions for the (001) surfaces of PtSi, NiGe and PtGe are 5.12, 4.57 and 4.83 eV, respectively, suggesting that these metals and their alloys can be used as self-aligned contacts to p-type silicon and germanium. Work functions for Y and Hf germanides range from 2.4 to 4.3 eV making them a possible n-type contact material. In addition, we also report an ab-initio calculation of the Schottky-barrier height at the Si(001)/PtSi(001) interface. The p-type Schottky barrier height of 0.28 eV is found in good agreement with predictions of a simple metal induced gap states (MIGS) theory and available experiment. This low barrier suggests PtSi as a low contact resistance junction metal for silicon CMOS technology. We identify the growth conditions necessary to stabilize this orientation.


2020 ◽  
Vol 22 (41) ◽  
pp. 23699-23706
Author(s):  
Rui Zhang ◽  
Guoqiang Hao ◽  
Xiaojun Ye ◽  
Shangpeng Gao ◽  
Hongbo Li

Tuning the electrical transport behavior and reducing the Schottky barrier height of nanoelectronic devices remain a great challenge.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1188
Author(s):  
Ivan Rodrigo Kaufmann ◽  
Onur Zerey ◽  
Thorsten Meyers ◽  
Julia Reker ◽  
Fábio Vidor ◽  
...  

Zinc oxide nanoparticles (ZnO NP) used for the channel region in inverted coplanar setup in Thin Film Transistors (TFT) were the focus of this study. The regions between the source electrode and the ZnO NP and the drain electrode were under investigation as they produce a Schottky barrier in metal-semiconductor interfaces. A more general Thermionic emission theory must be evaluated: one that considers both metal/semiconductor interfaces (MSM structures). Aluminum, gold, and nickel were used as metallization layers for source and drain electrodes. An organic-inorganic nanocomposite was used as a gate dielectric. The TFTs transfer and output characteristics curves were extracted, and a numerical computational program was used for fitting the data; hence information about Schottky Barrier Height (SBH) and ideality factors for each TFT could be estimated. The nickel metallization appears with the lowest SBH among the metals investigated. For this metal and for higher drain-to-source voltages, the SBH tended to converge to some value around 0.3 eV. The developed fitting method showed good fitting accuracy even when the metallization produced different SBH in each metal-semiconductor interface, as was the case for gold metallization. The Schottky effect is also present and was studied when the drain-to-source voltages and/or the gate voltage were increased.


Sign in / Sign up

Export Citation Format

Share Document