Surface oxygen vacancies on Co3O4 mediated catalytic formaldehyde oxidation at room temperature

2016 ◽  
Vol 6 (11) ◽  
pp. 3845-3853 ◽  
Author(s):  
Zhong Wang ◽  
Wenzhong Wang ◽  
Ling Zhang ◽  
Dong Jiang

This study reveals the essential role played by surface oxygen vacancies in catalytic oxidation reactions, and complements the common viewpoint that Co3+ is the major activity species in Co3O4-based systems.

2017 ◽  
Vol 4 (11) ◽  
pp. 2215-2224 ◽  
Author(s):  
Shuying Huang ◽  
Xiaofeng Zhu ◽  
Bei Cheng ◽  
Jiaguo Yu ◽  
Chuanjia Jiang

Flexible nickel foam coated with Pt/NiO nanoflakes was prepared for HCHO catalytic oxidation at ambient temperature.


2020 ◽  
Vol 63 (9-10) ◽  
pp. 810-816
Author(s):  
Yaobin Li ◽  
Chunying Wang ◽  
Changbin Zhang ◽  
Hong He

Author(s):  
Hailin Zhao ◽  
Jie Tang ◽  
Zengyuan Li ◽  
Jie Yang ◽  
Hao Liu ◽  
...  

Catalytic oxidation is the most effective method to eliminate the in-door formaldehyde, the Mn-based catalyst with low cost and high activity has drawn great attention. Herein, p-type semiconductor NiO doped...


2015 ◽  
Vol 1 (11) ◽  
pp. e1500462 ◽  
Author(s):  
Dehui Deng ◽  
Xiaoqi Chen ◽  
Liang Yu ◽  
Xing Wu ◽  
Qingfei Liu ◽  
...  

Coordinatively unsaturated (CUS) iron sites are highly active in catalytic oxidation reactions; however, maintaining the CUS structure of iron during heterogeneous catalytic reactions is a great challenge. Here, we report a strategy to stabilize single-atom CUS iron sites by embedding highly dispersed FeN4 centers in the graphene matrix. The atomic structure of FeN4 centers in graphene was revealed for the first time by combining high-resolution transmission electron microscopy/high-angle annular dark-field scanning transmission electron microscopy with low-temperature scanning tunneling microscopy. These confined single-atom iron sites exhibit high performance in the direct catalytic oxidation of benzene to phenol at room temperature, with a conversion of 23.4% and a yield of 18.7%, and can even proceed efficiently at 0°C with a phenol yield of 8.3% after 24 hours. Both experimental measurements and density functional theory calculations indicate that the formation of the Fe═O intermediate structure is a key step to promoting the conversion of benzene to phenol. These findings could pave the way toward highly efficient nonprecious catalysts for low-temperature oxidation reactions in heterogeneous catalysis and electrocatalysis.


2017 ◽  
Vol 31 (36) ◽  
pp. 1750351 ◽  
Author(s):  
A. T. Apostolov ◽  
I. N. Apostolova ◽  
S. Trimper ◽  
J. M. Wesselinowa

Using a microscopic model taking into account the spin–phonon interactions we have studied the magnetic properties of pure and ion-doped SnO2 nanoparticles (NPs). The magnetization M in pure SnO2 NPs is due to surface oxygen vacancies. By doping with magnetic Co ion we observe a maximum in M for small Co-concentration, x = 1%, whereas for nonmagnetic Cu ion M increases with x. By Co-doping there is a local distribution for small Co-concentration, whereas by Cu this is not the case. It is shown that there is a strong connection between the lattice and M. The results are in good agreement with the experimental data.


2018 ◽  
Vol 15 (3) ◽  
pp. 380-387
Author(s):  
Xia Zhao ◽  
Xiaoyu Lu ◽  
Lipeng Zhang ◽  
Tianjiao Li ◽  
Kui Lu

Aim and Objective: Pyrazolone sulfones have been reported to exhibit herbicidal and antibacterial activities. In spite of their good bioactivities, only a few methods have been developed to prepare pyrazolone sulfones. However, the substrate scope of these methods is limited. Moreover, the direct sulfonylation of pyrazolone by aryl sulfonyl chloride failed to give pyrazolone sulfones. Thus, developing a more efficient method to synthesize pyrazolone sulfones is very important. Materials and Method: Pyrazolone, aryl sulphonyl hydrazide, iodine, p-toluenesulphonic acid and water were mixed in a sealed tube, which was heated to 100°C for 12 hours. The mixture was cooled to 0°C and m-CPBA was added in batches. The mixture was allowed to stir for 30 min at room temperature. The crude product was purified by silica gel column chromatography to afford sulfuryl pyrazolone. Results: In all cases, the sulfenylation products were formed smoothly under the optimized reaction conditions, and were then oxidized to the corresponding sulfones in good yields by 3-chloroperoxybenzoic acid (m-CPBA) in water. Single crystal X-ray analysis of pyrazolone sulfone 4aa showed that the major tautomer of pyrazolone sulfones was the amide form instead of the enol form observed for pyrazolone thioethers. Moreover, the C=N double bond isomerized to form an α,β-unsaturated C=C double bond. Conclusion: An efficient method to synthesize pyrazolone thioethers by iodine-catalyzed sulfenylation of pyrazolones with aryl sulfonyl hydrazides in water was developed. Moreover, this method was employed to synthesize pyrazolone sulfones in one-pot by subsequent sulfenylation and oxidation reactions.


Sign in / Sign up

Export Citation Format

Share Document