Hybrid solar converters for maximum exergy and inexpensive dispatchable electricity

2015 ◽  
Vol 8 (11) ◽  
pp. 3083-3091 ◽  
Author(s):  
Howard M. Branz ◽  
William Regan ◽  
Kacy J. Gerst ◽  
J. Brian Borak ◽  
Elizabeth A. Santori

Hybrid converters could optimally exploit the solar spectrum to realize higher conversion efficiencies and low electricity costs, while ensuring the availability of inexpensive dispatchable solar power.

Author(s):  
Cs. Singer ◽  
R. Buck ◽  
R. Pitz-Paal ◽  
H. Mu¨ller-Steinhagen

In commercial power plant technology, the market introduction of ultra supercritical (USC) steam cycle power plants with steam parameters around 350bar and 720°C is the next development step. USC steam cycles are also proposed to decrease the levelized electricity costs of future solar power towers due to their highly efficient energy conversion. A 55% thermal efficiency with decreased specific investment costs is within the potential of USC steam cycles. The required process parameters can be achieved using nickel based alloys in the solar receiver, the tubing and other plant components. For solar tower applications, appropriate high temperature heat transfer media (HTM), high temperature heat exchangers and storage options are additionally required. Using the current development for molten salt power towers (Solar Tres) as a reference, several tower concepts with USC power plants were compared. The ECOSTAR methodology provided by [1] was applied for predicting the cost reduction potential and the annual performance of these power tower concepts applying tubular receivers with various HTM. The considered HTM include alkali nitrate salts, alkali chloride salts and liquid metals such as a Bi-Pb eutectic, tin or sodium. For the assessment, an analytical model of the heat transfer in a parametric 360° cylindrical, tubular central receiver was developed to examine the receiver characteristics for different geometries. The sensitivity of the specific cost assumptions for the levelized electricity costs (LEC) was evaluated for each concept variation. No detailed evaluation was done for the thermal storage, but comparable costs were assumed for all cases. The results indicate a significant cost reduction potential for the liquid metal HTM processes.


Author(s):  
Aditi Yerudkar ◽  
Mamta Nair ◽  
Vishwanath H. Dalvi ◽  
Sudhir V. Panse ◽  
Vineeta D. Deshpande ◽  
...  

Abstract Concentrating solar power is the most challenging and expensive yet highly efficient source of thermal energy from solar power. This is mainly due to the intermittency of the sun rays and expensive materials used to harness its energy. One of the main components adding to the cost is the solar selective absorber materials which are simply put spectrally selective coatings on a receiver system to capture maximum heat from the sun. These materials add to a large extent to the efficiency of converting the sun’s energy to thermal energy and in turn electricity. An ideal solar selective absorber possesses the property of absorbing maximum radiations in the solar spectrum and emit minimum in the thermal energy spectrum. In the current study, an inexpensive, simple and environment-friendly solar selective absorber is fabricated by a galvanic displacement reaction of copper nanoparticles on galvanised metal substrates. These copper nanoparticles have high absorptivity (0.8–0.9) by virtue of plasmon resonance property. The emissivity is low due to the highly reflective metal substrate. By varying size of the copper nanoparticles from 100 nm to 2 μm emissivity and absorptivity can be varied. However, achieving low emissivity and high absorptivity requires some optimising. The size depends on the concentration of precursor solution and immersion time of substrate. One of the remedies for controlling the deposition rate to tune the nanoparticle size and microstructure of deposited copper nanoparticle is by addition of a deposition inhibitor (e.g. Polyethylene glycol).


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Daniel N. Micha ◽  
Ricardo T. Silvares Junior

AbstractIn this work, we revisit the theoretical study on the conversion efficiency of series-connected multijunction solar cells. The theoretical method, based on the detailed balance model, is then applied to devices with 2 to 6 junctions under different illumination conditions. As results, (i) we show that the peaks in the efficiency distribution occur for recurrent values of bottom junction bandgap energy corresponding to atmospheric absorption in the solar spectrum, and (ii) we demonstrate that variations in the number of junctions, in the incident solar spectrum, and in the concentration factor lead to changes in the optimum bandgap energy set but that the bottom junction bandgap energy only changes among the recurrent values presented before. Additionally, we highlight that high conversion efficiencies take place for a broad distribution of bandgap energy combination, which make the choice of materials for the device more flexible. Therefore, based on the overall results, we propose more than a hundred III-V, II-VI and IV semiconductor material candidates to compose the bottom junction of highly efficient devices.


The article describes the payback calculation system of introduction a network solar power plants in private households that are locating in Ukraine. The system takes into account such parameters as beam, ground-reflected and diffuse solar radiation with atmospheric attenuation, the angle and the orientation roof, the daily average temperature of photovoltaic cells and the temperature coefficient of solar panels, when calculating the generation of a network solar power plant. The flux of solar radiation that falls on the surface of the photovoltaic cells is determined of the Hay-Davis model. When calculating the payback solar power plant takes into account such parameters as annual electricity consumption, current electricity price, feed-in tariff and annual electricity price increase. The average market price of a network solar power plant is taken at the rate of 1 dollar per 1 watt of installed capacity. Based on these parameters, the system calculates a monthly, daily average and annual generation of a network solar power plant, calculates the relative cost of a network solar power plant, calculates of electricity costs forecast over twenty years and calculates a payback period of a network solar power plant. The monthly and daily average generation of a network solar power plant, electricity costs forecast over twenty years and payback period of a network solar power plant displayed in the system in the form of corresponding graphs and diagrams. In the case if investments necessary for the construction and commissioning of a network solar power plant don’t pay off within twenty years, the system will display this information in the corresponding field.


Author(s):  
Chelsea Carlson

Photonic crystal nanostructures are the foundation for many optical applications such as nanochip waveguides, optical fibres, and high-Q nanocavities. Recently, researchers have begun to explore the use of photonic crystal slabs to increase the overall absorption of sunlight in thin-film solar photovoltaic (PV) cells. Currently, amorphous silicon (a-Si:H) thin-film technologies can only achieve efficiencies of up to 16% in laboratories and less than 10% in manufactured commercial products. The difficulty in improving these efficiencies arises from the inherent band gap properties of the crystalline silicon layer: the natural photonic bandgap in the near infrared (IR) region of light prohibits almost a third of the entire available solar spectrum from being absorbed. Some of this loss can be salvaged by increasing the thickness of the silicon layer, but this drives the price of the cell up and has very limited potential. However, using photonic crystal nanostructures in the active layer of the cell can decrease the reflection of light at the surface and increase the photon path within the film, enhancing the collection and conversion efficiencies over a broad spectrum. The absorption can be further increased by introducing pseudo-disorder within the structures. The purpose of this study was to explore the physical parameters of this disorder and quantitatively optimize absorption.


2007 ◽  
Vol 989 ◽  
Author(s):  
Miro Zeman ◽  
Janez Krc

AbstractToday amorphous and microcrystalline silicon based solar cells use surface-textured substrates for enhancing the light absorption and buffer and graded layers in order to improve the overall performance of the cells. Tandem and triple-junction configurations are utilized to assure better use of the solar spectrum and, thus, achieve higher conversion efficiencies of the devices. Resulting structures of the solar cells are complex and computer modeling has become an essential tool for a detailed understanding and further optimization of their optical and electrical behavior.The performance limits of tandem and triple-junction silicon based solar cells are studied by simulations using the optical simulator SunShine developed at Ljubljana University and the opto-electrical simulator ASA developed at Delft University of Technology. First, both simulators were calibrated with realistic optical and electrical parameters. Then, they were used to study the required scattering properties, absorption in non-active layers, antireflective coatings, the crucial role of the wavelength selective intermediate reflector, and a careful current matching in order to indicate the way for achieving a high photocurrent, more than 15 mA/cm2 for a tandem a-Si:H/ìc-Si:H and 11 mA/cm2 for a triple-junction a-Si:H/a-SiGe:H/ìc-Si:H solar cells. By optimizing electrical properties of the layers and interfaces, for example using a p-doped a-SiC layer with a larger band gap (EG > 2 eV) and introducing buffer layers at p/i interfaces, the extraction of the charge carriers, the open-circuit voltage and the fill factor of the solar cells are improved. The potential for achieving the conversion efficiency over 15% for the a-Si:H/ìc-Si:H and 17 % for the triple-junction a-Si:H/a-SiGe:H/ìc-Si:H solar cells is demonstrated.


2019 ◽  
Vol 6 (1) ◽  
pp. 42-49
Author(s):  
F. Allama ◽  
N. Gherraf ◽  
Y. Nicolas ◽  
T. Toupance ◽  
D. Khatmi

Abstract The present work deals with the synthesis of multichromophores which strongly absorb the solar spectrum to functionalize the nanoparticle oxide semiconductor used in the hybrid cells. At first, we developed a material that forms a chromophore triphenodioxazine. We obtained some triphenodioxazines with high yields up to 70 percent. On the other hand, we have carried out many tests such as UV-Visible, Cyclic voltammetry for our molecules to check their electronic and optical properties. The results confirmed that these chromophores meet the criteria for use in photovoltaic cells. Finally, we have successfully realized photovoltaic cells with triphenodioxazine. The findings were very interesting since the photovoltaic conversion efficiencies ranged from 4.30% to 6.30%. The new synthesis strategy of these chromophores opens a way for the development of organic materials used for photovoltaics.


2020 ◽  
Vol 10 (13) ◽  
pp. 4462
Author(s):  
Karina Vink ◽  
Eriko Ankyu ◽  
Yasunori Kikuchi

For micro-grid cost-benefit analyses, both energy production and demand must be estimated on the long-term of one year. However, there remains a scarcity of studies predicting energy production and demand simultaneously and in the long-term. By means of programming in R and applying linear, non-linear, and support vector regression, we show the in depth analysis of the data of a micro-grid on solar power generation and building energy demand and its potential to be modeled simultaneously on the term of one year, in relation to electricity costs. We found solar power generation is linearly related to solar irradiance, but the effect of temperature on total output was less pronounced than anticipated. Building energy demand was found to be related to multiple parameters of both time and weather, and could be estimated through a quadratic function in relation to temperature. Models for both solar power generation and building energy demand could predict electricity costs within 8% of actual costs, which is not yet the ideal accuracy, but shows potential for future studies. These results provide important statistics for future studies where building energy consumption of any building type is correlated in detail to various time and weather parameters.


Sign in / Sign up

Export Citation Format

Share Document