Facile synthesis of an amine hybrid aerogel with high adsorption efficiency and regenerability for air capture via a solvothermal-assisted sol–gel process and supercritical drying

2015 ◽  
Vol 17 (6) ◽  
pp. 3436-3445 ◽  
Author(s):  
Yong Kong ◽  
Xiaodong Shen ◽  
Sheng Cui ◽  
Maohong Fan

An amine hybrid resorcinol–formaldehyde/silica composite aerogel with high adsorption efficiency and regenerability for air capture was developed by a solvothermal-assisted sol–gel process combined with supercritical drying.

2006 ◽  
Vol 11-12 ◽  
pp. 19-22 ◽  
Author(s):  
Y.N. Feng ◽  
Lei Miao ◽  
Yong Ge Cao ◽  
T. Nishi ◽  
Sakae Tanemura ◽  
...  

RF (Resorcinol-Formaldehyde) aerogels and carbon aerogels were prepared through the sol-gel method following the routes of polymerization, gelation, supercritical drying and pyrolysis processes. The influence of fabrication parameters on the textural structure of the samples, e.g., specific surface area, pore size, and pore size distribution, etc., were systematically investigated. With a decrease in the R/F molar ratio, or an increase in the catalyst content within a limited range, the porosity of the nanostructure materials increases. The optimal temperature of pyrolysis for RF aerogel was investigated by TGA (Thermogravimetric Analysis).


2013 ◽  
Vol 706-708 ◽  
pp. 897-900 ◽  
Author(s):  
Rui He ◽  
Xuan Liu ◽  
Zhen Fa Liu ◽  
Li Hui Zhang

In this research the fabrication of carbon aerogel is reported. nanopore carbon aerogels were prepared via a sol-gel process with resorcinol and formaldehyde (RF) aerogels,which were cost-effectively manufacture form Rf wet gels by an ambient drying technique instead of conventional supercritical drying. The key of the work is to fabricate carbon aerogels with controllable nanopore structure, which means sharp pore size distribution and extremely high surface area.The influence of preparation condition of carbon aerogels was studied by scanning electron microscope and Micropore Physisorption Analyzer. The BET surface of the carbon aerogels are from 749m2/g to 1156m2/g .The size of the carbon nanoparticles are in the range of 20nm~40nm. The micro-pore volume and bore diameter can be controlled by gelation conditions such as RF mass fraction.


2011 ◽  
Vol 284-286 ◽  
pp. 707-710 ◽  
Author(s):  
Yue Qing Zhao ◽  
Qian Yi Jia ◽  
Ying Hua Liang ◽  
Hong Xia Guo ◽  
Feng Feng Li ◽  
...  

CuO-CoO-MnO/SiO2 nanocomposite aerogel as catalysts carrier was prepared via sol-gel process and CO2supercritical drying (SCD) technique. Catalyst supported by the nanocomposite aerogel was prepared via impregnation method. The catalyst was used for the synthesis of diphenyl carbonate (DPC), and the yield of DPC in mass is up to 26.31%. The catalysis system of PdCl2/Co(OAc)2-Cu(OAc)2-Mn(OAc)2/TBAB/H2BQ is favorable to the synthesis of DPC. PdCl2, acetates of transition metals and H2BQ were the key catalyst, inorganic cocatalyst and organic cocatalyst, respectively. TBAB was the surface active agent of Pd0and stabilizer of Pd2+in the catalysis system.


2013 ◽  
Vol 423-426 ◽  
pp. 523-527
Author(s):  
Xuan Liu ◽  
Zhen Fa Liu ◽  
Hao Lin Fu ◽  
Rui He ◽  
Li Hui Zhang

Phloroglucinol-resorcinol-formaldehyde organic aerogels (PRF) were prepared using phloroglucinol, resorcinol and formaldehyde in a sol-gel process, solvent replacement and drying at room temperature. The phloroglucinol-resorcinol-formaldehyde carbon aerogels (CPRF) were prepared by charring the PRF at high temperature under the aegis of helium flow. The microstructure of CPRF was characterized by infrared spectroscopy, specific surface area analyzer and scanning electron microscopy. The results showed that the CPRF had continuous network structure and high specific surface area.


2014 ◽  
Vol 38 (12) ◽  
pp. 5832-5839 ◽  
Author(s):  
Xingzhong Guo ◽  
Xiaobo Cai ◽  
Jie Song ◽  
Yang Zhu ◽  
Kazuki Nakanishi ◽  
...  

Monolithic mayenite has been successfully prepared via a sol–gel process followed by heat-treatment, exhibiting co-continuous macroporous structure and high porosity.


2012 ◽  
Vol 519 ◽  
pp. 83-86 ◽  
Author(s):  
Guang Wu Liu ◽  
Xing Yuan Ni ◽  
Bin Zhou ◽  
Qiu Jie Yu

This paper deals with the synthesis of ultralow density silica aerogels using tetramethyl orthosilicate (TMOS) as the precursor via sol-gel process followed by supercritical drying using acetonitrile solvent extraction. Ultralow density silica aerogels with 6 mg/cc of density was made for the molar ratio by this method. The microstructure and morphology of the ultralow density silica aerogels was characterized by the specific surface area, SBET, SEM, and the pore size distribution techniques. The results show that the ultralow density silica aerogel has the high specific surface area of 812m2/g. Thermal conductivities at desired temperatures were analyzed by the transient plane heat source method. Thermal conductivity coefficients of silica aerogel monoliths changed from 0.024 to 0.043W/ (m K) as temperature increased to 400°C, revealed an excellent heat insulation effect during thermal process.


2011 ◽  
Vol 1306 ◽  
Author(s):  
Anja Veronovski ◽  
Zoran Novak ◽  
Knez Željko

ABSTRACTThere are a lot of synthetic polymers which can be used for controlled drug delivery, however they are not easily accepted by the organism. Also incorporation of drugs into carriers runs under difficult conditions. Therefore scientists have been inclined to use natural-origin polymers, such as proteins and polysaccharides. Some of these promising natural polysaccharidic candidates are alginic acid sodium salt, guar gum and chitosan due to their outstanding merits. They are similar to extracellular matrix having high chemical versatility, good biological performance and cell or enzyme-controlled degradability. Many polysaccharidic hydrogels for drug delivery have already been prepared, but one of their weakness is their short life in dry air conditions; thus, special coating materials are being developed for enhancing their life time.Alginates were used in the present research for synthesis of organic biodegradable gels by sol-gel process, which were further easily converted to aerogels by supercritical drying. They are safe for use, nontoxic, and derived from renewable sources. Aerogels made of alginate are dry and stable materials, which makes them interesting as a substitute to hydrogels. Alginates undergo reversible gelation in aqueous solution through interaction with divalent cations such as Ca2+, which create ionic inter-chain bridges. Two fundamental methods of ionic cross-linking were used to prepare alginate hydrogels: the diffusion method, where spheres are created and the internal setting method resulting in monoliths. After producing the hydrogel, alcogels were formed by solvent exchange using 100% ethanol. Ethanol was later replaced by supercritical CO2 with supercritical drying (100 bar, 35°C). Aerogels made from natural polysaccharides combine both biocharacteristics and aerogel characteristics such as high porosity and specific surface area, which makes them really attractive in drug delivery applications. The aerogels obtained in present research were therefore studied as drug carriers. The effects of the alginate composition and synthesis method on model drug nicotinic acid release were investigated. The results indicated that by using the internal setting cross-linking method for obtaining aerogels nicotinic acid was released in a more controlled manner. That is why further investigation was done on alginate spherical beads for prolonging their drug release. A multi-step sol-gel process was applied to generate complex aerogels with multi-membranes. First ionically cross-linked spherical cores were obtained by dropwise addition of sodium alginate solution into a CaCl2 solution. These cores were further immersed into alginate solution, filtered through a sieve and dropped into a salt solution again. By repeating the above process, different multi-membrane hydrogels were produced and further converted to aerogels. By adding more membranes around core burst drug release was successfully inhibited.


2009 ◽  
Vol 340 (2) ◽  
pp. 202-208 ◽  
Author(s):  
Hongwei Du ◽  
Paul D. Hamilton ◽  
Matthew A. Reilly ◽  
André d’Avignon ◽  
Pramit Biswas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document