Continuous nucleus extraction by optically-induced cell lysis on a batch-type microfluidic platform

Lab on a Chip ◽  
2016 ◽  
Vol 16 (8) ◽  
pp. 1447-1456 ◽  
Author(s):  
Shih-Hsuan Huang ◽  
Lien-Yu Hung ◽  
Gwo-Bin Lee

An innovative, microfluidics-based approach featuring optically-induced cell lysis (OICL) for nucleus extraction and collection in an automatic format was demonstrated. The efficiency of cell membrane lysis and the ODEP nucleus separation was measured to be 78.04 ± 5.70% and 80.90 ± 5.98%, respectively, leading to an overall nucleus extraction efficiency of 58.21 ± 2.21%.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3105-3105 ◽  
Author(s):  
Liang Lin ◽  
Shih-Feng Cho ◽  
Kenneth Wen ◽  
Tengteng Yu ◽  
Phillip A Hsieh ◽  
...  

A proliferation inducing ligand (APRIL) is a natural ligand for B cell maturation antigen (BCMA) and transmembrane activator and CAML interactor (TACI), two receptors overexpressed in human multiple myeloma (MM) patient cells. Specifically, BCMA is highly expressed in plasma cells of all MM patients and BCMA-based immunotherapies has recently shown impressive response rates in patients with relapsed and refractory diseases. APRIL, mainly secreted by myeloma-supporting bone marrow (BM) accessory cells, i.e., macrophages, osteoclasts (OC), promotes MM cell progression in vitro and in vivo. It further induces survival and function of regulatory T cells (Treg) via TACI, but not BCMA, to support an immunosuppressive MM BM microenvironment (Leukemia. 2019;33:426). Here, we study effects of APRIL in current immunotherapies in MM and determine whether APRIL influences antibody-dependent cellular cytotoxicity (ADCC) induced by therapeutic anti-BCMA (J6M0) or anti-CD38 (daratumumab) mAbs via FcR-expressing immune effector cell-dependent mechanisms. Using anti-human IgG1 to detect J6M0 binding to the cell membrane BCMA, we first showed that APRIL, in a dose-dependent manner (31-500 ng/ml), competed with J6M0 for binding to BCMA. Such effects were inhibited by the blocking anti-APRIL monoclonal antibody (mAb) (Apry-1-1), as confirmed by flow cytometry and confocal microscopy. APRIL still inhibited J6M0 binding to BCMA at 4°C, arguing against that APRIL induces shedding of BCMA receptor. Using PE labeled anti-FLAG to detect APRIL-FLAG bindings to MM cell surface BCMA, J6M0 (0.25-4 µg/ml) did not alter APRIL binding to BCMA following 2h or 1d incubation. High concentrations of J6M0 (>10 µg/ml) only blocked ~50% of APRIL (0.2 µg/ml)-induced NFκB activity as determined by specific DNA binding assays, indicating that APRIL-induced signaling cascade via BCMA or TACI in MM cells is not completely blocked by J6M0. In parallel, data analysis using mRNA-seq identified 594 or 355 differentially expressed genes (Log2-Fold-change > 1.5 and adjusted p < 0.05) in APRIL- and BCMA-overexpressed RPMI8226 MM cell transfectants, respectively, when compared with control parental cells. KEGG and Reactome pathway enrichment analysis further defined that these differentially expressed genes are enriched in cell adhesion, migration, chemokine signaling pathways, and JAK/STAT signaling pathways, in addition to proliferation and survival in MM cells. We next asked whether overnight treatment with APRIL in MM cell lines decreased their baseline lysis by FcR-expressing effector cells, i.e., NK, monocytes. In a dose-dependent manner, APRIL (10-200 ng/ml) downregulated baseline MM cell lysis mediated by these effector cells. Importantly, in a similar fashion, ADCC was decreased against all APRIL-treated vs control MM cell lines induced by J6M0 or daratumumab. Conversely, blocking anti-APRIL mAbs reverted APRIL-suppressed cytotoxicity against MM cells induced by J6M0 or daratuzumab. These results were validated by decreased J6M0-induced NK cell degranulation following co-incubation with APRIL-treated vs control MM cells. In contrast, anti-APRIL neutralizing mAbs specifically blocked APRIL-inhibited NK cell membrane CD107a expression. Furthermore, co-cultures with MM-supporting OCs or macrophages decreased ADCC against MM cells by NK cells; conversely the neutralizing anti-APRIL mAb significantly blocked APRIL-reduced MM cell lysis by J6M0- or Daratumumab. Finally, APRIL reduced J6M0-induced patient MM cell lysis when freshly isolated BM mononuclear cells from MM patients (n=10) were incubated with NK cells from the same individual. Anti-APRIL mAbs still blocked APRIL blockade in J6M0-induced autologous patient MM cell lysis. Taken together, our data further indicate that therapies directed at the APRIL/BCMA and APRIL/TACI axes may simultaneously target MM cells and counteract APRIL-reduced MM cell lysis induced by therapeutic mAbs targeting MM cells. These results thus support combination strategies of blocking APRIL mAbs with BCMA- or CD38-directed immunotherapies to further overcome MM cell-induced immunosuppressive BM microenvironment, thereby enhance Disclosures Munshi: Abbvie: Consultancy; Abbvie: Consultancy; Celgene: Consultancy; Takeda: Consultancy; Takeda: Consultancy; Oncopep: Consultancy; Janssen: Consultancy; Janssen: Consultancy; Oncopep: Consultancy; Amgen: Consultancy; Amgen: Consultancy; Adaptive: Consultancy; Adaptive: Consultancy; Celgene: Consultancy. Anderson:Gilead Sciences: Other: Advisory Board; Janssen: Other: Advisory Board; Sanofi-Aventis: Other: Advisory Board; OncoPep: Other: Scientific founder ; C4 Therapeutics: Other: Scientific founder .


2020 ◽  
Vol 1610 ◽  
pp. 460539
Author(s):  
Ricardo Fradique ◽  
Ana M. Azevedo ◽  
Virginia Chu ◽  
João P. Conde ◽  
M. Raquel Aires-Barros

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Yi-Sin Chen ◽  
Charles Lai ◽  
Chihchen Chen ◽  
Gwo-Bin Lee

Cell-released, membrane-encapsulated extracellular vesicles (EVs) serve as a means of intercellular communication by delivering bioactive cargos including proteins, nucleic acids and lipids. EVs have been widely used for a variety...


Soft Matter ◽  
2021 ◽  
Author(s):  
Goutam Ghosh ◽  
Lata Panicker

The RCPC interaction causes protein unfolding and cancer cell membrane lysis. Antibody-functionalized nanoparticles can be targeted to cancer cell membrane causing increase of the membrane entropy to disintegrate it and cell-death.


2018 ◽  
Author(s):  
Felix Wong ◽  
Ariel Amir

Membrane lysis, or rupture, is a cell death pathway in bacteria frequently caused by cell wall-targeting antibiotics. Although several studies have clarified biochemical mechanisms of antibiotic action, a physical understanding of the processes leading to lysis remains lacking. Here, we analyze the dynamics of membrane bulging and lysis inEscherichia coli, where, strikingly, the formation of an initial bulge (“bulging”) after cell wall digestion occurs on a characteristic timescale as fast as 100 ms and the growth of the bulge (“swelling”) occurs on a slower characteristic timescale of 10-100 s. We show that bulging can be energetically favorable due to the relaxation of the entropic and stretching energies of the inner membrane, cell wall, and outer membrane and that experimentally observed bulge shapes are consistent with model predictions. We then show that swelling can involve both the continued flow of water into the cytoplasm and the enlargement of wall defects, after which cell lysis is consistent with both the inner and outer membranes exceeding characteristic estimates of the yield areal strains of biological membranes. Our results contrast biological membrane physics and the physics of thin shells, reveal principles of how all bacteria likely function in their native states, and may have implications for cellular morphogenesis and antibiotic discovery across different species of bacteria.


2017 ◽  
Vol 114 (6) ◽  
pp. 1371-1376 ◽  
Author(s):  
William H. Conrad ◽  
Morwan M. Osman ◽  
Jonathan K. Shanahan ◽  
Frances Chu ◽  
Kevin K. Takaki ◽  
...  

Mycobacterium tuberculosisandMycobacterium marinumare thought to exert virulence, in part, through their ability to lyse host cell membranes. The type VII secretion system ESX-1 [6-kDa early secretory antigenic target (ESAT-6) secretion system 1] is required for both virulence and host cell membrane lysis. Both activities are attributed to the pore-forming activity of the ESX-1–secreted substrate ESAT-6 because multiple studies have reported that recombinant ESAT-6 lyses eukaryotic membranes. We too find ESX-1 ofM. tuberculosisandM. marinumlyses host cell membranes. However, we find that recombinant ESAT-6 does not lyse cell membranes. The lytic activity previously attributed to ESAT-6 is due to residual detergent in the preparations. We report here that ESX-1–dependent cell membrane lysis is contact dependent and accompanied by gross membrane disruptions rather than discrete pores. ESX-1–mediated lysis is also morphologically distinct from the contact-dependent lysis of other bacterial secretion systems. Our findings suggest redirection of research to understand the mechanism of ESX-1–mediated lysis.


Sign in / Sign up

Export Citation Format

Share Document