In this study, a self-condensing vinyl copolymerization/redox (SCVP/Redox) system was constructed to prepare hyperbranched poly(methyl-6-O-methacryloyl-α-D-glucoside) by using Cu(III) as the initiator in aqueous solution, in which the –OH group in C-2, C-3 and C-4 position on pyranose rings could be initiated by Cu(III). The branched and linear units were clearly distinguished by nuclear magnetic resonance (1H NMR) to estimate the degree of branching (DB). When the ratio of Cu(III) to monomer fixed at 0.5:1, the DB value reached 0.32, which was higher than the product initiated by Ce(IV). Moreover, the inhibition activity of the products on amyloid fibrillation was investigated by using the hen egg-white lysozyme (HEWL) as a model based on the difference of the initiation sites. The results showed that the –OH groups in C-4 position might play an important role in this process.