Bio-templated fabrication of hierarchically porous WO3 microspheres from lotus pollens for NO gas sensing at low temperatures

RSC Advances ◽  
2015 ◽  
Vol 5 (37) ◽  
pp. 29428-29432 ◽  
Author(s):  
Xiao-Xue Wang ◽  
Kuan Tian ◽  
Hua-Yao Li ◽  
Ze-Xing Cai ◽  
Xin Guo

Lotus pollen was used as a template to prepare WO3 microspheres. The porous structure of the microspheres is ideal for gas sensing. The microsphere-based sensor has high sensitivity (S = 46.2) to 100 ppm NO gas with fast response and recovery speed 62 s/223 s) at 200 °C.

2011 ◽  
Vol 295-297 ◽  
pp. 337-340
Author(s):  
Chao Li ◽  
Hai Yan Xue ◽  
You Qi Zhu ◽  
Yu Ting Wang

Ag-doped porous SnO2 nanopowders were synthesized via a facile glucan-assisted template method combined with subsequent calcinations. Morphology, crystal structure, and H2S gas sensing properties of pure and Ag-doped porous SnO2 nanopowders were investigated. In comparison with undoped SnO2 nanopowders, the Ag-doped porous SnO2 nanopowders demonstrated enhanced H2S sensing behavior with high sensitivity, short response and recovery time, relatively low response concentration of 50 ppm, and good selectivity. The dramatic improvement in H2S gas sensing characteristics was explained in terms of rapid gas diffusion onto the entire sensing surface due to the less-agglomerated and porous structure of SnO2 nanopowders and the catalytic effect of doped-Ag element. The main objective of this research is to develop a new method to introduce catalysts on gas-sensing materials with less-agglomerated and porous structure.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 648
Author(s):  
Aijie Liang ◽  
Jingyuan Ming ◽  
Wenguo Zhu ◽  
Heyuan Guan ◽  
Xinyang Han ◽  
...  

Breath monitoring is significant in assessing human body conditions, such as cardiac and pulmonary symptoms. Optical fiber-based sensors have attracted much attention since they are immune to electromagnetic radiation, thus are safe for patients. Here, a microfiber (MF) humidity sensor is fabricated by coating tin disulfide (SnS2) nanosheets onto the surface of MF. The small diameter (~8 μm) and the long length (~5 mm) of the MF promise strong interaction between guiding light and SnS2. Thus, a small variation in the relative humidity (RH) will lead to a large change in optical transmitted power. A high RH sensitivity of 0.57 dB/%RH is therefore achieved. The response and recovery times are estimated to be 0.08 and 0.28 s, respectively. The high sensitivity and fast response speed enable our SnS2-MF sensor to monitor human breath in real time.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1915
Author(s):  
Shenawar Ali Khan ◽  
Muhammad Saqib ◽  
Muhammad Muqeet Rehman ◽  
Hafiz Mohammad Mutee Ur Rehman ◽  
Sheik Abdur Rahman ◽  
...  

A novel composite based on a polymer (P(VDF-TrFE)) and a two-dimensional material (graphene flower) was proposed as the active layer of an interdigitated electrode (IDEs) based humidity sensor. Silver (Ag) IDEs were screen printed on a flexible polyethylene terephthalate (PET) substrate followed by spin coating the active layer of P(VDF-TrFE)/graphene flower on its surface. It was observed that this sensor responds to a wide relative humidity range (RH%) of 8–98% with a fast response and recovery time of 0.8 s and 2.5 s for the capacitance, respectively. The fabricated sensor displayed an inversely proportional response between capacitance and RH%, while a directly proportional relationship was observed between its impedance and RH%. P(VDF-TrFE)/graphene flower-based flexible humidity sensor exhibited high sensitivity with an average change of capacitance as 0.0558 pF/RH%. Stability of obtained results was monitored for two weeks without any considerable change in the original values, signifying its high reliability. Various chemical, morphological, and electrical characterizations were performed to comprehensively study the humidity-sensing behavior of this advanced composite. The fabricated sensor was successfully used for the applications of health monitoring and measuring the water content in the environment.


2015 ◽  
Vol 10 (1) ◽  
pp. 13-20
Author(s):  
Elisabete Galeazzo ◽  
Marcos C. Moraes ◽  
Henrique E. M. Peres ◽  
Michel O. S. Dantas ◽  
Victor G. C. Lobo ◽  
...  

Intensive research has been focused on investigating new sensing materials, such as carbon nanotubes (CNT) because of their promising characteristics. However, there are challenges related to their application in commercial devices such as sensitivity, compatibility, and complexity of miniaturization, among others. We report the study of the electrical behavior of devices composed by multi-walled carbon nanotubes (MWCNT) deposited between aluminum electrodes on glass substrates by means of dielectrophoresis (DEP), which is a simple and cost-effective method. The devices were fabricated by varying the DEP process time. Remarkable changes in their electric resistance were noticed depending on the MWCNT quantities deposited. Other electrical properties of devices such as high sensitivity, fast response time and stability are also characterized in humid environment. A humidity sensing mechanism is proposed on the basis of charge transfer between adsorbed water molecules and the MWNTC surface or between water and the glass surface.


Author(s):  
Monika Kwoka ◽  
Michal A. Borysiewicz ◽  
Pawel Tomkiewicz ◽  
Anna Piotrowska ◽  
Jacek Szuber

In this paper a novel type of a highly sensitive gas sensor device based on the surface photovoltage effect is described. The developed surface photovoltage gas sensor is based on a reverse Kelvin probe approach. As the active gas sensing electrode the porous ZnO nanostructured thin films are used deposited by the direct current (DC) reactive magnetron sputtering method exhibiting the nanocoral surface morphology combined with an evident surface nonstoichiometry related to the unintentional surface carbon and water vapor contaminations. Among others, the demonstrated SPV gas sensor device exhibits a high sensitivity of 1 ppm to NO2 with a signal to noise ratio of about 50 and a fast response time of several seconds under the room temperature conditions.


2011 ◽  
Vol 197-198 ◽  
pp. 1735-1738
Author(s):  
Qiang Li ◽  
Li Hua Huo ◽  
Shan Gao ◽  
Xiao Juan Qi ◽  
Hui Zhao

The thin films of copper 2, 9, 16, 23-tetra-iso-propoxy phthalocyanine (i-pro-CuPc) were prepared by spin-coating technique. The surface morphology and spectroscopy property of the thin films were characterized by AFM, UV-Vis and FT-IR spectra. The results show that good films can be obtained under certain spinning speed. The gas-sensing properties of the multilayers to three alcohols gas were measured at room temperature. The spin-coating thin films exhibited high sensitivity and rapid response- recovery characteristics to these gases. The response and recovery time of the thin films to 30*10-6 v/v of C2H5OH vapor is only 28 s and 55 s, respectively.


2013 ◽  
Vol 690-693 ◽  
pp. 1680-1684
Author(s):  
Feng Yun Sun ◽  
Ming Hu ◽  
Peng Sun

WO3 nano-films were deposited on Al2O3 substrate by dc reactive magnetron sputtering method. The effects of preparing conditions, such as the discharge gas ratio (Ar:O2), working pressure, sputtering time and annealing temperature on microstructure, crystalline state and NO2-sensing properties of WO3 nano-films were investigated by orthogonal trial experiment method. The optimum technological conditions were determined by orthogonal test and extreme difference analysis. The crystallization, morphology and composition of WO3 thin film obtained at the optimal parameters were studied by XRD, SEM and XPS. The gas sensing mechanism was also studied. WO3 nano-film shows high sensitivity, fast response, good selectivity at the best operating temperature 200°C.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1059 ◽  
Author(s):  
Yanlin Zhang ◽  
Chaowei Jia ◽  
Qiuyue Wang ◽  
Quan Kong ◽  
Gang Chen ◽  
...  

Toluene is extensively used in many industrial products, which needs to be effectively detected by sensitive gas sensors even at low-ppm-level concentrations. Here, NiFe2O4 nano-octahedrons were calcinated from NiFe-bimetallic metal-organic framework (MOFs) octahedrons synthesized by a facile refluxing method. The co-existence of p-Phthalic acid (PTA) and 3,3-diaminobenzidine (DAB) promotes the formation of smooth NiFe-bimetallic MOFs octahedrons. After subsequent thermal treatment, a big weight loss (about 85%) transformed NiFe2O4 nanoparticles (30 nm) into NiFe2O4 porous nano-octahedrons with hollow interiors. The NiFe2O4 nano-octahedron based sensor exhibited excellent gas sensing properties for toluene with a nice stability, fast response, and recovery time (25 s/40 s to 100 ppm toluene), and a lower detection limitation (1 ppm) at 260 °C. The excellent toluene-sensing properties can not only be derived from the hollow interiors combined with porous nano-octahedrons to favor the diffusion of gas molecules, but also from the efficient catalytic activity of NiFe2O4 nanoparticles.


2006 ◽  
Vol 45 ◽  
pp. 1828-1833
Author(s):  
Fabio A. Deorsola ◽  
P. Mossino ◽  
Ignazio Amato ◽  
Bruno DeBenedetti ◽  
A. Bonavita ◽  
...  

Nanostructured semiconductor metal oxides have played a central role in the gas sensing research field, because of their high sensitivity, selectivity and low response time. Among all the processes, developed for the synthesis of nanostructured metal oxides, gel combustion seems to be the most promising route due to low-cost precursors and simplicity of the process. It combines chemical gelation and combustion, involving the formation of a gel from an acqueous solution and an exothermic redox reaction, yielding to very porous and softly agglomerated nanopowders. In this work, nanostructured tin oxide, SnO2, and titanium oxide, TiO2, have been synthesized through gel combustion. Powders showed nanometric particle size and high specific surface area. The so-obtained TiO2 and SnO2 nanopowders have been used as sensitive element of resistive λ sensor and ethanol sensor respectively, realized depositing films of nanopowders dispersed in water onto alumina substrates provided with Pt contacts and heater. TiO2-based sensors showed at high temperature good response, fast response time, linearity in a wide range of O2 concentration and long-term stability. SnO2-based sensors have shown high sensitivity to low concentrations of ethanol at moderate temperature.


Sign in / Sign up

Export Citation Format

Share Document