Synthesis of novel 1,4-disubstituted 1,2,3-triazolo-bosentan derivatives – evaluation of antimicrobial and anticancer activities and molecular docking

RSC Advances ◽  
2015 ◽  
Vol 5 (127) ◽  
pp. 105266-105278 ◽  
Author(s):  
K. Easwaramoorthi ◽  
A. Jeya Rajendran ◽  
K. Chennakesava Rao ◽  
Y. Arun ◽  
C. Balachandran ◽  
...  

One pot synthesis with good yields. Good antimicrobial activity against 4EMV receptor. Prominent anticancer activity against A549 and SKOV-3 cell lines. Significantin vitrocytotoxicity at 7.81 μg mL−1. Docking mode of1hwith 2XP2 receptor.

2019 ◽  
Vol 16 (8) ◽  
pp. 619-626
Author(s):  
Arunkumar Thiriveedhi ◽  
Ratnakaram Venkata Nadh ◽  
Navuluri Srinivasu ◽  
Narayana Murthy Ganta

Nowadays, hybrid drugs have gained a significant role in the treatment of different health problems. Most of the hybrid molecules with different heterocyclic moieties were proved to be potent anti-tumor agents in cancer chemotherapy. Hence, the present study is aimed at the evaluation of in vitro anticancer activity of novel hybrid molecules (pyrazolyl benzoxazole conjugates) and to investigate their anticancer activity by molecular docking studies. Designed, synthesized and characterized the novel pyrazolyl benzoxazole conjugates. Anticancer activity of these compounds was determined by SRB assay. Then molecular docking studies were carried out against proto-oncogene tyrosine-protein kinase (ATP-Src, PDB: 2BDF), a putative target for cancer. All the synthesized compound derivatives were evaluated against MCF-7, KB, Hop62 and A549 cancer cell lines. Compounds 9b and 9c exhibited excellent anticancer activities with GI50 values of <0.1 µM against MCF-7 and A549 cell lines. Compound 9e exhibited good antitumor activity on MCF-7 and A-549 with GI50 values of 0.12 µM and 0.19 µM respectively. Compound 9g showed better anticancer activity on A-549 cancer cell line with GI50 of 0.34 µM. The two-hybrid molecules 9b and 9c are found to be comparably potent with the standard drug doxorubicin and may act as drug lead compounds in medicinal chemistry aspect. The present docking investigation proved that having benzoxazole of compound 9c at the position of benzofuran of reference compound (N-acetyl pyrazoline derivative) might be valid for contributing to anti-cancer activity.


Author(s):  
Sushmitha Bujji ◽  
Praveen Kumar E ◽  
Sree Kanth Sivan ◽  
Manjunatha DH ◽  
Subhashini N.J.P.

Background: Cancer disease is making a serious concern globally. Global cancer occurrence is steadily increasing every year. There is always a persistent need to develop new anticancer drugs with reduced side effects or act synergistically with the existing chemotherapeutics. Objective: Benzoxazoles are fused bicyclic nitrogen and oxygen-containing heterocyclic compounds and are considered biologically privileged scaffolds. We designed a synthetic route to link the benzoxazoles with oxadiazoles resulting in a better pharmacophore for anticancer activity. Methods: A series of novel amide derivatives of benzoxazole linked 1,3,4-oxadiazoles (10a-j) were synthesized and characterized by 1H NMR, 13C NMR, and mass spectroscopic techniques. The biological properties of the compounds were screened in vitro against four different tumor cell lines. Results: The results suggest that the compound 10b having 3,4,5-trimethoxy substitution on the phenyl ring exhibited potent anticancer activity in three cell lines (A549 = 0.13 ± 0.014 µM, MCF-7 = 0.10 ± 0.013 µM and HT-29 = 0.22 ± 0.017 µM). Notably, among the synthesized derivatives, compounds 10b, 10c, 10f, 10g, and 10i exhibited potent anticancer activity than the control IC50 in the range of 0.11 ± 0.02 to 0.93 ± 0.034 µM. Molecular docking simulation results showed compounds were stabilized by hydrogen bond and π-π interactions with the protein. Conclusion: The molecules showed comparable binding affinities with standard Combretastatin-A4. The present research work is preliminary and needs further studies to take the synthesized compounds to the next level in the cancer research field.


2018 ◽  
Vol 42 (23) ◽  
pp. 18621-18632 ◽  
Author(s):  
Manisha R. Bhosle ◽  
Lalit D. Khillare ◽  
Jyotirling R. Mali ◽  
Aniket P. Sarkate ◽  
Deepak K. Lokwani ◽  
...  

Efficient and rapid synthesis of 18 tyrosinase inhibitors with good to moderate anticancer activity and good oral drug like properties.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
ASHOK DONGAMANTI ◽  
Nagaraju Nalaparaju ◽  
Sarasija Madderla ◽  
Vijaya Lakshmi Bommidi

In the present work, we report the one pot synthesis of tetrazole based 3-hydroxy-4H-chromen-4-ones 3(a-g) from  4-(1H-tetrazol-5-yl)benzaldehyde and 2-hydroxy acetophenone using KOH and H2O2 by modified Algar-Flynn-Oyamada reaction under conventional and microwave irradiation conditions. In this technique, flavonols are synthesized without isolating chalcones, in good yields. All the synthesized compounds were characterized by IR, NMR, MS and elemental. All newly synthesized compounds were screened for their in-vitro antimicrobial activity against strains such as Staphylococcus aurous, Bacillus subtilis, Klebsiella pneumonia, Escherichia coli, Aspergillus Niger, Aspergillus flavus, and Fusarium oxysporum. The results of antimicrobial studies revealed that most of the compounds exhibit good activity.


2021 ◽  
Author(s):  
ulviye acar çevik ◽  
Ismail Celik ◽  
Ayşen IŞIK ◽  
Yusuf Özkay ◽  
Zafer Asım Kaplancıklı

Abstract In this study, due to the potential anticancer effects of the benzimidazole ring system, a series of benzimidazole-1,3,4-oxadiazole derivatives were synthesized and characterized by 1H NMR, 13C NMR, and MS spectra analyses. In the in vitro anticancer assay, all the compounds tested anticancer activities using MTT-based assay against five cancer cell lines (MCF-7, A549, HeLa, C6, and HepG2). Among them, compound 5a exhibited the most potent activity with IC50 values of 5,165±0,211 μM and 5,995±0,264 μM against MCF-7 and HepG2 cell lines. Compound 5a was included in the BrdU test to determine the DNA synthesis inhibition effects for both cell types. Furthermore, compound 5c was also found to be more effective than doxorubicin on the HeLa cell line. The selectivity of anticancer activity was evaluated in NIH3T3 (mouse embryo fibroblast cell line) cell line. In vitro, enzymatic inhibition assays of aromatase enzyme were performed for compound 5a acting on the MCF-7 cell line. For compound 5a, in silico molecular docking against aromatase enzyme was performed to determine possible protein-ligand interactions and binding modes.


2020 ◽  
Vol 5 (41) ◽  
pp. 12807-12818
Author(s):  
Sanay Naha ◽  
Shivaraja Govindaiah ◽  
Swamy Sreenivasa ◽  
Jeevan Kallur Prakash ◽  
Sivan Velmathi

Author(s):  
Mahmoud El-Shahat ◽  
Mowafia A.M. Salama ◽  
Ahmed F. El-Farargy ◽  
Mamdouh M. Ali ◽  
Dalia M. Ahmed

Background: Thiazolopyrimidine analogues are versatile synthetic scaffold possessing wide spectrum of biological interests involving potential anticancer activity. Objective: To report the synthesis of novel bromothiazolopyrimidine derivatives and the study of both molecular modeling and in-vitro anticancer activity. Method: Novel bromothiazolopyrimidine derivatives 5–18 have been prepared from 2-bromo-3-(4-chlorophenyl)-1-(3,4- dimethylphenyl)-propenone 3 as a key starting compound. The anti-cancer activities of the new compounds were evaluated against HepG2, MCF-7, A549 and HCT116 cell lines. Results: The compounds 16, 17 and 18 showed cytotoxic and growth inhibitory activities on both colon and lung cells. The cytotoxic activities of the novel synthetic compounds 8, 9, 11, 16, 17 and 18 were due to CDC25 phosphatases inhibition as shown by the enzymatic binding assay. Although compounds 8, 9 and 11 have only demonstrated CDC25B phosphatases inhibition. Conclusion: The novel bromothiazolopyrimidine derivatives showed promising in vitro anticancer activities against colon cancer HCT116 and lung cancer A549 cell lines comparable to the anticancer drug doxorubicin.


2020 ◽  
Vol 17 (12) ◽  
pp. 959-968
Author(s):  
Ramamurthy Katikireddy ◽  
Ramu Kakkerla ◽  
M.P.S. Murali Krishna ◽  
Gandamalla Durgaiah ◽  
Y.N. Reddy

A series of benzimidazolyl-1,3,4-oxadiazoles (7a-k) were synthesized and evaluated for in vitro anticancer activity against HeLa, MCF7, A549, and HEK293 cell lines. The results indicate that compounds 7b, 7j and 7k have shown excellent anticancer activity and while most of the compounds were non toxic to normal HEK293 cell lines. Molecular docking results of the synthesized compounds with the target Pin1 protein were also discussed.


Sign in / Sign up

Export Citation Format

Share Document