Quantifying the synergistic effect of dispersion state and interfacial adhesion contributions on impact strength of core shell rubber-toughened glassy polymers

RSC Advances ◽  
2016 ◽  
Vol 6 (4) ◽  
pp. 3377-3385 ◽  
Author(s):  
Z. Khoubi-Arani ◽  
N. Mohammadi ◽  
M. R. Moghbeli ◽  
P. Pötschke

Synergistically improved impact strength of a core shell rubber-toughened glassy polymer was rationalized with disparities ratio of |ΔT/ΔD|.

1978 ◽  
Vol 51 (4) ◽  
pp. 775-787 ◽  
Author(s):  
S. L. Aggarwal ◽  
R. A. Livigni

Abstract The incorporation of a rubber phase in glassy polymers, as is well known in the case of high impact polystyrene, leads to an increase in their impact strength. Block polymers offer three principal approaches for obtaining multiphase glassy polymers in which an elastomer phase is present in the matrix of the glassy polymer. They are: (1) control of block polymer composition, (2) blending of block polymer with homopolymers, and (3) polymerization of a solution of a block polymer in the monomer corresponding to one of the blocks. The observed properties, such as impact strength, modulus, and heat distortion temperature, desired in rubber-modified glassy polymers are discussed for block polymer systems prepared using the above approaches.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yuanying Zhang ◽  
Xuechun Zhang ◽  
Yongbin Cao ◽  
Jiachun Feng ◽  
Wuli Yang

Herein, acrylonitrile-styrene-acrylate copolymer (ASA) particles with different microstructure were synthesized by emulsion polymerization and then used for toughening poly(styrene-co-acrylonitrile) (SAN) resin. The structure of ASA particles was confirmed by FTIR. TEM results demonstrated that the particles with different morphologies of multilobe shape, complete core-shell and dumbbell shape were obtained depending on the cross-linker amount. It was found that the toughening efficiency reached the highest when the ASA particles had complete core-shell structure and the shell composition was close to that of the SAN matrix. It was ascribed to the fact that the complete shell layer and similar shell composition provided sufficient interfacial adhesion and transferred stress to induce larger matrix deformation, so that the notched impact strength increased accordingly. Moreover, the notched impact strength of SAN/ASA blend was improved without significantly sacrificing tensile strength when adding 30 wt% ASA particles with the size of around 400 nm. SEM results of the impact-fractured surfaces revealed that irregular fluctuation and numerous microvoids occurred. It was deduced that the toughening mechanism was attributed to the crazings and cavitation of particles. Therefore, this study paved a way of toughening the resin by adjusting the microstructure of the particles including morphology, composition, and size.


2007 ◽  
Vol 15 (5) ◽  
pp. 343-355 ◽  
Author(s):  
S. Lipponen ◽  
P. Pietikäinen ◽  
U. Vainio ◽  
R. Serimaa ◽  
J.V. Seppälä

Ethylene/1,7-octadiene copolymer was polymerised with metallocene catalyst and hydrosilylated to form silane functionalised polyethylenes (PE-co-SiX, X=Cl, OEt, Ph). The functionalised species were tested as modifiers in composites of rubber toughened polypropylene (heterophasic PP, hPP) and microsilica filler (μSi). A metallocene-based functionalised PE (PE-co-SiF) produced earlier in our laboratory and three commercial grades of functionalised polyolefins (one PE- and two PP-based) were used as reference modifiers. Major differences were seen in the toughness of the composites both above and below the glass transition temperature (Tg) of PP. In addition to increasing the stiffness, the microsilica filler enhanced the toughness of the heterophasic polypropylene by over 200% at ambient temperature. Below the Tg of PP (at −20 °C), the influence of μSi was the opposite and the impact strength of the hPP/μSi composite was below that of unfilled hPP. With the addition of just 2 wt% of functionalised polyethylene, the poor cold toughness of hPP/μSi composite was improved by nearly 100%. With the same addition, the toughness of the composites at ambient temperature was improved by 50 to 100% compared with the unfilled hPP. This behaviour was explained by significant changes in the fracture mechanism. Addition of functionalised PE increased the concentration of microsilica in the rubbery phase, allowing the crack to enter that phase. The rubbery phase was also able to absorb a large amount of impact energy below the glass transition temperature of PP.


2014 ◽  
Vol 970 ◽  
pp. 312-316
Author(s):  
Sujaree Tachaphiboonsap ◽  
Kasama Jarukumjorn

Thermoplastic starch (TPS)/poly (lactic acid) (PLA) blend and thermoplastic starch (TPS)/poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blend were prepared by melt blending method. PLA grafted with maleic anhydride (PLA-g-MA) was used as a compatibilizer to improve the compatibility of the blends. As TPS was incorporated into PLA, elongation at break was increased while tensile strength, tensile modulus, and impact strength were decreased. Tensile properties and impact properties of TPS/PLA blend were improved with adding PLA-g-MA indicating the enhancement of interfacial adhesion between PLA and TPS. With increasing PBAT content, elongation at break and impact strength of TPS/PLA blends were improved. The addition of TPS decreased glass transition temperature (Tg), crystallization temperature (Tc), and melting temperature (Tm) of PLA. Tgand Tcof TPS/PLA blend were decreased by incorporating PLA-g-MA. However, the presence of PBAT reduced Tcof TPS/PLA blend. Thermal properties of TPS/PLA/PBAT blends did not change with increasing PBAT content. SEM micrographs revealed that the compatibilized TPS/PLA blends exhibited finer morphology when compared to the uncompatibilized TPS/PLA blend.


RSC Advances ◽  
2016 ◽  
Vol 6 (17) ◽  
pp. 13873-13880 ◽  
Author(s):  
Xiaoling Lang ◽  
Meiqin Shi ◽  
Yekun Jiang ◽  
Huan Chen ◽  
Chunan Ma

The Pt–WC@C demonstrates higher electrochemical activity, which could be attributed to the better dispersed Pt on WC which leads to the improved synergistic effect between WC and Pt.


2006 ◽  
Vol 129 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Fahmi Zaïri ◽  
Moussa Naït-Abdelaziz ◽  
Krzysztof Woznica ◽  
Jean-Michel Gloaguen

In this study, a modelization of the viscoplastic behavior of amorphous polymers is proposed, from an approach originally developed for metal behavior at high temperature, in which state variable constitutive equations have been modified. A procedure for the identification of model parameters is developed through the use of experimental data from both uniaxial compressive tests extracted from the literature and uniaxial tensile tests performed in this study across a variety of strain rates. The numerical algorithm shows that the predictions of this model well describe qualitatively and quantitatively the intrinsic softening immediately after yielding and the subsequent progressive orientational hardening corresponding to the response of two polymers, amorphous polyethylene terephthalate and rubber toughened polymethyl methacrylate.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Wei Kit Chee ◽  
Nor Azowa Ibrahim ◽  
Norhazlin Zainuddin ◽  
Mohd Faizal Abd Rahman ◽  
Buong Woei Chieng

Poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) blends were prepared via melt blending technique. Glycidyl methacrylate (GMA) was added as reactive compatibilizer to improve the interfacial adhesion between immiscible phases of PLA and PCL matrices. Tensile test revealed that optimum in elongation at break of approximately 327% achieved when GMA loading was up to 3wt%. Slight drop in tensile strength and tensile modulus at optimum ratio suggested that the blends were tuned to be deformable. Flexural studies showed slight drop in flexural strength and modulus when GMA wt% increases as a result of improved flexibility by finer dispersion of PCL in PLA matrix. Besides, incorporation of GMA in the blends remarkably improved the impact strength. Highest impact strength was achieved (160% compared to pure PLA/PCL blend) when GMA loading was up to 3 wt%. SEM analysis revealed improved interfacial adhesion between PLA/PCL blends in the presence of GMA. Finer dispersion and smooth surface of the specimens were noted as GMA loading increases, indicating that addition of GMA eventually improved the interfacial compatibility of the nonmiscible blend.


2020 ◽  
Vol 12 (36) ◽  
pp. 40285-40295
Author(s):  
Shuai Zhang ◽  
Haozhe Wang ◽  
Huayan Si ◽  
Xiaoqian Jia ◽  
Ziyan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document