Thermal degradation and flammability properties of multilayer structured wood fiber and polypropylene composites with fire retardants

RSC Advances ◽  
2016 ◽  
Vol 6 (17) ◽  
pp. 13890-13897 ◽  
Author(s):  
Lichao Sun ◽  
Qinglin Wu ◽  
Yanjun Xie ◽  
Fengqiang Wang ◽  
Qingwen Wang

Single and multi-layer structured wood fiber and polypropylene composites filled with fire retardants were prepared. Fire retardant property of composites were determined by thermogravimetric analysis and cone calorimetry.

2019 ◽  
Vol 34 (1) ◽  
pp. 96-106 ◽  
Author(s):  
Chao Zheng ◽  
Dongfang Li ◽  
Monica Ek

Abstract Sustainable thermal insulating materials produced from cellulosic fibers provide a viable alternative to plastic insulation foams. Industrially available, abundant, and inexpensive mechanical pulp fiber and recycled textile fiber provide potential raw materials to produce thermal insulating materials. To improve the fire retardancy of low-density thermal insulating materials produced from recycled cotton denim and mechanical pulp fibers, bio-based fire retardants, such as sulfonated kraft lignin, kraft lignin, and nanoclays, were coated onto sustainable insulating material surfaces to enhance their fire retardancy. Microfibrillated cellulose was used as a bio-based binder in the coating formula to disperse and bond the fire-retardant particles to the underlying thermal insulating materials. The flammability of the coated thermal insulating materials was tested using a single-flame source test and cone calorimetry. The results showed that sulfonated kraft lignin-coated cellulosic thermal insulating materials had a better fire retardancy compared with that for kraft lignin with a coating weight of 0.8 kg/m2. Nanoclay-coated samples had the best fire retardancy and did not ignite under a heat flux of 25 kW/m2, as shown by cone calorimetry and single-flame source tests, respectively. These cost-efficient and bio-based fire retardants have broad applications for improving fire retardancy of sustainable thermal insulating materials.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 8235-8248
Author(s):  
Se-Hwi Park ◽  
Min Lee ◽  
Eun-Chang Kang ◽  
Sang-Min Lee ◽  
Kugbo Shim

Fire-retardant performance was imparted to the existing wood-fiber insulation boards (WIB) via internal and external treatment with silica- and phosphorus-based fire-retardants. The combustion and smoke characteristics were investigated using a cone calorimeter. Based on combustion for 600 s, the weight loss and shrinkage of WIBs decreased due to fire-retardant treatment. The time to ignition was delayed to more than 400 s on the WIBs treated internal and external fire- retardant (WIB-IEs), whereas that of WIB with only internal treatment (WIB-I) was 5 s. The overall heat release rate (HRR), HRRpeak, and total heat release (THR) of WIB-IE specimens decreased, and the fire resistance standard Class II was satisfied. The WIB-IE2 showed higher fire resistance performance, with a HRRmean level of 6.7 kW/m2 and a THR of 1.3 MJ/m2. The WIB-I showed extremely low total smoke release (TSR) compared to the external fire-retardant treated specimen. However, the externally treated WIB-IEs had an increased TSR of 165 to 256 m2/m2 due to the increase in incomplete combustion caused by the fire-retardant. After fire-retardant treatment, CO2 generation decreased because the rate of complete combustion decreased, but CO emission increased slightly. Therefore, silica- and phosphorus-based fire-retardants by internal and external treatments were suitable for WIBs.


2014 ◽  
Vol 931-932 ◽  
pp. 152-156 ◽  
Author(s):  
Atchariyaphorn Phromsaen ◽  
Prinya Chindaprasirt ◽  
Salim Hiziroglu ◽  
Pornnapa Kasemsiri

In this research, the effect of diammoniumphosphate (DAP) as fire retardant additive during thermal degradation of wood samples from shorea obtuse (Dipterocarpaceae) has been investigated. Thermal properties of wood samples impregnated with DAP ranging from 0-40 %wt were characterized by thermogravimetric analysis (TGA) and limiting oxygen index (LOI). Leachability of DAP from impregnated samples kept under running water was also investigated. The results indicated that the rate of weight loss obtained from TGA reveal that impregnation of DAP reduced the degradation rate from 0.95%/°C to 0.56%/°C. Furthermore, LOI of woods specimens trended to be increase from 24.8 to 30.6 when they were treated with DAP having a range of 0-30 %wt. Based on the results of this study, wood samples impregnated with 30%wt of DAP can be classified as self-extinguishing materials and cloud meet the requirement for non-flammability in construction. The leachability test indicated that only trace amount of unreacted DAP leached from the samples.


2021 ◽  
Vol 5 (10) ◽  
pp. 258
Author(s):  
Latha Krishnan ◽  
Baljinder. K. Kandola ◽  
John R. Ebdon

This study investigated the effects of phosphorus fire retardants (FRs) in matrices from co-cured blends of an unsaturated polyester (UP) with inherently fire-retardant phenolic resoles (PH) on the mechanical and flammability properties of resultant glass fibre-reinforced composites. Three different phenolic resoles with UP have been used: (i) an ethanol soluble (PH-S), (ii) an epoxy-functionalised (PH-Ep), and (iii) an allyl-functionalised resin (PH-Al) with two different phosphorus FRs: resorcinol bis (diphenyl phosphate) (RDP) and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO). The flammabilities of the resultant composites were evaluated using cone calorimetry and the UL-94 test. Cone calorimetric results showed reductions in peak heat release rate (PHRR) and total heat released (THR) as expected compared to those of UP and respective UP/PH composite laminates without FRs. UL-94 tests results showed that while all composites had HB rating, FR containing samples self-extinguished after removal of the flame. The mechanical properties of the composites were evaluated using flexural, tensile and impact tests. All FRs reduced the mechanical properties, and the reduction in mechanical properties was more severe in UP/PH-S (least compatible blends) composites with FRs than in UP/PH-Al (most compatible blends) composites with FRs. Amongst the different composites, those from UP/PH-Al with DOPO showed the best fire retardancy with little deterioration of mechanical performance.


2010 ◽  
Vol 123-125 ◽  
pp. 23-26 ◽  
Author(s):  
Robert A. Shanks ◽  
Susan Wong ◽  
Christopher M.L. Preston

Fire-barrier performance is an important property where the polymer composite can continue to provide a barrier to spread of fire after the polymer has burned. In this work a barrier is created by formation of a self-supporting ceramic from the inorganic fillers, over a temperature range where the polymer undergoes thermal degradation. Thermogravimetry showed that degradation of the unsaturated polyester resin left a residual char that subsequently degraded in parrale with reactions of the fire-retardants and ceramifying flux.


2014 ◽  
Vol 884-885 ◽  
pp. 73-77
Author(s):  
Cui Cui Song ◽  
Quan Ji ◽  
Chun Xia Li ◽  
Feng Yu Quan ◽  
Yan Zhi Xia

We have investigated the effect of zirconium oxide on the thermal degradation and flame retardancy of viscose fibers. ZrO2/cellulose fiber was prepared by wet spinning. Combustion behaviour and flammability were assessed using the limiting oxygen index (LOI) and thermogravimetric analysis from ambient temperature to 800°C and cone calorimetry. LOI results showed that the ZrO2 increased the LOI of viscose fiber from 20% to 26%, which showed that ZrO2 particles had a positive effect on cellulose flame-retardancy. Results from thermogravimetric analysis (TG) indicated that the ZrO2/cellulose fibers produced greater quantities of residues than viscose fibers. The combustion residues were examined using the scanning electron microscopy, indicating that ZrO2/cellulose fiber produced consistent, thick residues. Cone calorimetry indicated that heat release rate and total heat release values of ZrO2/cellulose fiber were less than those of viscose fibers.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4094
Author(s):  
Imran Ali ◽  
Nam Kyeun Kim ◽  
Debes Bhattacharyya

The integration of intumescent flame-retardant (IFR) additives in natural fiber-based polymer composites enhances the fire-retardant properties, but it generally has a detrimental effect on the mechanical properties, such as tensile and flexural strengths. In this work, the feasibility of graphene as a reinforcement additive and as an effective synergist for IFR-based flax-polypropylene (PP) composites was investigated. Noticeable improvements in tensile and flexural properties were achieved with the addition of graphene nanoplatelets (GNP) in the composites. Furthermore, better char-forming ability of GNP in combination with IFR was observed, suppressing HRR curves and thus, lowering the total heat release (THR). Thermogravimetric analysis (TGA) detected a reduction in the decomposition rate due to strong interfacial bonding between GNP and PP, whereas the maximum decomposition rate was observed to occur at a higher temperature. The saturation point for the IFR additive along with GNP has also been highlighted in this study. A safe and effective method of graphene encapsulation within PP using the fume-hood set-up was achieved. Finally, the effect of flame retardant on the flax–PP composite has been simulated using Fire Dynamics Simulator.


2006 ◽  
Vol 102 (5) ◽  
pp. 4759-4763 ◽  
Author(s):  
Alinaghi Karimi ◽  
Saleh Nazari ◽  
Ismaeil Ghasemi ◽  
Mehdi Tajvidi ◽  
Ghanbar Ebrahimi

2021 ◽  
Vol 30 (4) ◽  
pp. 36-47
Author(s):  
O. S. Lebedchenko ◽  
S. V. Puzach ◽  
V. I. Zykov

Introduction. The reliable operation of safety systems, that allows for the failure of no more than one safety system component, entails the safe shutdown and cool-down of an NPP reactor in the event of fire. However, the co-authors have not assessed the loss of performance by an insulating material, treated by intumescent compositions and used in the power cables of the above safety systems exposed to the simultaneous effect of various modes of fire and current loads.Goals and objectives. The purpose of the article is the theoretical assessment of the application efficiency of intumescent fire-retardant coatings in power cables used in the safety systems of nuclear power plants having water-cooled and water-moderated reactors under fire conditions. To achieve this goal, the temperature of the outer surface of the insulation and the intumescent fire-retardant coating was analyzed depending on the mode of fire. Theoretical foundations. A non-stationary one-dimensional heat transfer equation is solved to identify the temperature distribution inside the multilayered insulation and the fire-protection layer of a conductive core.Results and their discussion. The co-authors have identified dependences between the temperature of the outer surface of the insulation and the fire retarding composition of the three-core cable VVGng (A)-LS 3x2.5-0.66, on the one hand, and the temperature of the indoor gas environment for three standard modes of fire and one real fire mode. It is found that before the initiation of the process of destruction of the insulation material, the intumescence of the fire-retardant coating occurs only in case of a hydrocarbon fire. Under real fire conditions, the maximal insulation melting time before the initiation of intumescence of the fire-retardant coating at the minimal temperature of intumescence is 4.75 minutes, while the maximal time period from the initiation of destruction of the insulation material to the moment of the insulation melting is 6.0 minutes.Conclusions. An experimental or theoretical substantiation of parameters of intumescent fire retardants, performed using standard modes of fire, has proven the potential loss of operational properties by insulating materials of power cables, used in the safety systems of nuclear power plants, in case of a real fire. Therefore, it is necessary to establish a scientific rationale for the efficient use of fire retardants in the above cables with regard for the conditions of a real fire.


Sign in / Sign up

Export Citation Format

Share Document