Polypyrrole-stabilized gold nanorods with enhanced photothermal effect towards two-photon photothermal therapy

2015 ◽  
Vol 3 (22) ◽  
pp. 4539-4545 ◽  
Author(s):  
Cuiling Du ◽  
Anhe Wang ◽  
Jinbo Fei ◽  
Jie Zhao ◽  
Junbai Li

The core–shell composite of Au–polypyrrole nanorods with high two-photon photothermal effect and stability could efficiently kill tumor cells under irradiation.

2020 ◽  
Vol 65 (10) ◽  
pp. 904
Author(s):  
V. O. Zamorskyi ◽  
Ya. M. Lytvynenko ◽  
A. M. Pogorily ◽  
A. I. Tovstolytkin ◽  
S. O. Solopan ◽  
...  

Magnetic properties of the sets of Fe3O4(core)/CoFe2O4(shell) composite nanoparticles with a core diameter of about 6.3 nm and various shell thicknesses (0, 1.0, and 2.5 nm), as well as the mixtures of Fe3O4 and CoFe2O4 nanoparticles taken in the ratios corresponding to the core/shell material contents in the former case, have been studied. The results of magnetic research showed that the coating of magnetic nanoparticles with a shell gives rise to the appearance of two simultaneous effects: the modification of the core/shell interface parameters and the parameter change in both the nanoparticle’s core and shell themselves. As a result, the core/shell particles acquire new characteristics that are inherent neither to Fe3O4 nor to CoFe2O4. The obtained results open the way to the optimization and adaptation of the parameters of the core/shell spinel-ferrite-based nanoparticles for their application in various technological and biomedical domains.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 880 ◽  
Author(s):  
Yanhua Yao ◽  
Nannan Zhang ◽  
Xiao Liu ◽  
Qiaofeng Dai ◽  
Haiying Liu ◽  
...  

In this paper, the plasmon resonance effects of gold nanorods was used to achieve rapid photothermal therapy for malignant melanoma cells (A375 cells). After incubation with A375 cells for 24 h, gold nanorods were taken up by the cells and gold nanorod clusters were formed naturally in the organelles of A375 cells. After analyzing the angle and space between the nanorods in clusters, a series of numerical simulations were performed and the results show that the plasmon resonance coupling between the gold nanorods can lead to a field enhancement of up to 60 times. Such high energy localization causes the temperature around the nanorods to rise rapidly and induce cell death. In this treatment, a laser as low as 9.3 mW was used to irradiate a single cell for 20 s and the cell died two h later. The cell death time can also be controlled by changing the power of laser which is focused on the cells. The advantage of this therapy is low laser treatment power, short treatment time, and small treatment range. As a result, the damage of the normal tissue by the photothermal effect can be greatly avoided.


2016 ◽  
pp. 3287-3294
Author(s):  
Kostiantyn Turcheniuk ◽  
Charles-Henri Hage ◽  
Jolanda Spadavecchia ◽  
Laurent Heliot ◽  
Rabah Boukherroub ◽  
...  

2017 ◽  
Vol 5 (8) ◽  
pp. 1642-1649 ◽  
Author(s):  
Nan Li ◽  
Dechao Niu ◽  
Xiaobo Jia ◽  
Jianping He ◽  
Yu Jiang ◽  
...  

Gold-based silica nanocomposites with hierarchically porous structure, as well as excellent photothermal effect, have shown great potentials in biomedical applications.


MRS Advances ◽  
2020 ◽  
Vol 5 (40-41) ◽  
pp. 2121-2127
Author(s):  
Ssu-Hao Huang ◽  
Pei-Hua Chen ◽  
Yan-Ping Chen ◽  
Muoi Tang

ABSTRACTThe polymerization of 3,4-ethylenedioxythiophene (EDOT) onto nanosilica (SiO2) was synthesized in this study by using supercritical carbon dioxide (SCCO2). With the addition of dopants of p-toluenesulfonic acid (p-TSA) or decylbenzene sulfonic acid (DBSA), the PEDOT/SiO2 composite became conductive. The product was characterized by FTIR spectroscopy and the core-shell structure was confirmed through the TEM images. The electrical properties were analyzed by UV-vis absorbance and four-point probe measurement. DBSA is shown as the better dopants with the molar ratio (DBSA/EDOT) of 0.2 at the reaction time of 48 hours. The maximum coating percentage is 63 wt% under the optimal operation conditions at 40oC and 280 bar. The conductivity is tuned up to 6.6×10-2 S/cm after the coating process.


2010 ◽  
Vol 168-170 ◽  
pp. 1833-1836
Author(s):  
Gang Qiang Geng ◽  
Jing Tao Guo ◽  
Jun Jun Zou ◽  
Gong Xun Bian

In order to obtain super aerogels heat insulating composite materials with silane coupling agent on the in-situ surface treatment. The core-shell structure composite materials have been prepared by dispersion polymerization process of polystyrene grafted on the SiO2 particles. By TEM on these samples the impact of the system components initiator polymerization parameters and dispersion process was discussed. The results showed that the system component of the greatest impact on conversion rate is the ratio of aerogels /St ,the optimum reaction temperature is 75 °C.With organic initiator KPS as initiator after a unique ultrasound technique to obtain the core-shell composite materials structure which coating is 70%.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Hadiyah N. Green ◽  
Dmitry V. Martyshkin ◽  
Cynthia M. Rodenburg ◽  
Eben L. Rosenthal ◽  
Sergey B. Mirov

The mastery of active tumor targeting is a great challenge in near infrared photothermal therapy (NIRPTT). To improve efficiency for targeted treatment of malignant tumors, we modify the technique of conjugating gold nanoparticles to tumor-specific antibodies. Polyethylene glycol-coated (PEGylated) gold nanorods (GNRs) were fabricated and conjugated to an anti-EGFR antibody. We characterized the conjugation efficiency of the GNRs by comparing the efficiency of antibody binding and the photothermal effect of the GNRs before and after conjugation. We demonstrate that the binding efficiency of the antibodies conjugated to the PEGylated GNRs is comparable to the binding efficiency of the unmodified antibodies and 33.9% greater than PEGylated antibody-GNR conjugates as reported by Liao and Hafner (2005). In addition, cell death by NIRPTT was sufficient to kill nearly 90% of tumor cells, which is comparable to NIRPTT with GNRs alone confirming that NIRPTT using GNRs is not compromised by conjugation of GNRs to antibodies.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1905
Author(s):  
Irina S. R. Rio ◽  
Ana Rita O. Rodrigues ◽  
Juliana M. Rodrigues ◽  
Maria-João R. P. Queiroz ◽  
R. C. Calhelha ◽  
...  

Liposome-like nanoarchitectures containing manganese ferrite nanoparticles covered or decorated with gold were developed for application in dual cancer therapy, combining chemotherapy and photothermia. The magnetic/plasmonic nanoparticles were characterized using XRD, UV/Visible absorption, HR-TEM, and SQUID, exhibiting superparamagnetic behavior at room temperature. The average size of the gold-decorated nanoparticles was 26.7 nm for MnFe2O4 with 5–7 nm gold nanospheres. The average size of the core/shell nanoparticles was 28.8 nm for the magnetic core and around 4 nm for the gold shell. Two new potential antitumor fluorescent drugs, tricyclic lactones derivatives of thienopyridine, were loaded in these nanosystems with very high encapsulation efficiencies (higher than 98%). Assays in human tumor cell lines demonstrate that the nanocarriers do not release the antitumor compounds in the absence of irradiation. Moreover, the nanosystems do not cause any effect on the growth of primary (non-tumor) cells (with or without irradiation). The drug-loaded systems containing the core/shell magnetic/plasmonic nanoparticles efficiently inhibit the growth of tumor cells when irradiated with red light, making them suitable for a triggered release promoted by irradiation.


2014 ◽  
Vol 936 ◽  
pp. 359-363
Author(s):  
Yan Li Wu ◽  
Min Liao ◽  
Hai Xin Ding ◽  
Ru Chun Yang ◽  
Dan Dan Xiong ◽  
...  

The SiO2/NaGdF4:Eu3+ core/shell composite was prepared by a template-mediated method, making monodispersed SiO2 as core and NaGdF4:Eu colloids as shell, the morphology and the core-shell structure of the resulting particles were analyzed by SEM,X-ray diffraction, and the photo-luminescence and magnetic properties of the microspheres were investigated too. The results shows the composite have great potential to be used as homogeneous magnetic/optical bifunctional material.


2003 ◽  
Vol 796 ◽  
Author(s):  
Zhexiong Tang ◽  
Hui Wan ◽  
Robert Clark ◽  
Sze C. Yang

ABSTRACTWe report the synthesis of new inorganic/organic composite particles with a core/shell structure. The core component is an inorganic oxide (e.g. TiO2, CeO2 or MoO3), and the shell component is a double-strand polyaniline. Three methods for material synthesis were examined. The electrochemical properties of one type of the composite particles show electronic interaction between the organic conducting polymer shell and its inorganic core. The double-strand polyaniline in the composite shows better pH stability of the conductive form than that of the corresponding single-strand polyaniline in a similar core/shell composite.


Sign in / Sign up

Export Citation Format

Share Document