Towards targeting anticancer drugs: ruthenium(ii)–arene complexes with biologically active naphthoquinone-derived ligand systems

2016 ◽  
Vol 45 (33) ◽  
pp. 13091-13103 ◽  
Author(s):  
Mario Kubanik ◽  
Wolfgang Kandioller ◽  
Kunwoo Kim ◽  
Robert F. Anderson ◽  
Erik Klapproth ◽  
...  

2-Hydroxy-[1,4]-naphthoquinone-derived ligands and their RuII(η6-p-cymene)Cl complexes were prepared with the aim to obtain multimodal anticancer agents.

2017 ◽  
Vol 46 (7) ◽  
pp. 2339-2349 ◽  
Author(s):  
Leila Tabrizi ◽  
Hossein Chiniforoshan

A series of iridium(iii) arene complexes of naphthoquinone derivatives have been synthesized and investigated for their suitability as potential anticancer drugs.


2020 ◽  
Vol 26 (41) ◽  
pp. 7337-7371 ◽  
Author(s):  
Maria A. Chiacchio ◽  
Giuseppe Lanza ◽  
Ugo Chiacchio ◽  
Salvatore V. Giofrè ◽  
Roberto Romeo ◽  
...  

: Heterocyclic compounds represent a significant target for anti-cancer research and drug discovery, due to their structural and chemical diversity. Oxazoles, with oxygen and nitrogen atoms present in the core structure, enable various types of interactions with different enzymes and receptors, favoring the discovery of new drugs. Aim of this review is to describe the most recent reports on the use of oxazole-based compounds in anticancer research, with reference to the newly discovered iso/oxazole-based drugs, to their synthesis and to the evaluation of the most biologically active derivatives. The corresponding dehydrogenated derivatives, i.e. iso/oxazolines and iso/oxazolidines, are also reported.


Author(s):  
Agnieszka Wróbel ◽  
Danuta Drozdowska

Background: Dihydrofolate reductase (DHFR) has been known for decades as a molecular target for antibacterial, antifungal and anti-malarial treatments. This enzyme is becoming increasingly important in the design of new anticancer drugs, which is confirmed by numerous studies including modelling, synthesis and in vitro biological research. This review aims to present and discuss some remarkable recent advances on the research of new DHFR inhibitors with potential anticancer activity. Methods: The scientific literature of the last decade on the different types of DHFR inhibitors has been searched. The studies on design, synthesis and investigation structure-activity relationship were summarized and divided into several subsections depending on the leading molecule and its structural modification. Various methods of synthesis, potential anticancer activity and possible practical applications as DHFR inhibitors of new chemical compounds were described and discussed. <p> Results: This review presents the current state of knowledge on the modification of known DHFR inhibitors and the structures and searching for over eighty new molecules, designed as potential anticancer drugs. In addition, DHFR inhibitors acting on thymidylate synthase (TS), carbon anhydrase (CA) and even DNA-binding are presented in this paper. <p> Conclusion: Thorough physicochemical characterization and biological investigations it is possible to understand structure-activity relationship of DHFR inhibitors. This will enable even better design and synthesis of active compounds, which would have the expected mechanism of action and the desired activity.


Author(s):  
Neha V. Bhilare ◽  
Pratibha B. Auti ◽  
Vinayak S. Marulkar ◽  
Vilas J. Pise

: Thiophenes are one among the abundantly found heterocyclic ring systems in many biologically active compounds. Moreover various substituted thiophenes exert numerous pharmacological actions on account of their isosteric resemblance with compounds of natural origin thus rendering them with diverse actions like antibacterial, antifungal, antiviral, anti-inflammatory, analgesic, antiallergic, hypotensives etc.. In this review we specifically explore the chemotherapeutic potential of variety of structures consisting of thiophene scaffolds as prospective anticancer agents.


2020 ◽  
Author(s):  
Reza Maleki ◽  
Mohammad Dahri ◽  
Hossein Akbarialiabad

Abstract BackgroundTodays, drug nanocarrier development and improving its biophysical properties is one of the updated and intended of nano-biopharmaceutical science researches. Single-walled carbon nanotubes (SWCNT), as a typical carbon structure based nanocarrier, but have some obstacles in drug delivery mechanisms. In that current study, the penetration, loading, and release of Doxorubicin and Paclitaxel, as two anticancer agents, were investigated using a novel modified and functionalized SWCNT.ResultsThis study was carried out using molecular dynamics simulation based on a dual-responsive smart biomaterial. At the in-silico study, Interaction energies between drugs and carriers, numbers of hydrogen bonds, diffusion coefficient, and gyration radius were investigated. The kinetic analysis of drug adsorption and release revealed that, fascinatingly, drug loading and drug release are selective at physiological and cancerous acidic pH, respectively. Interaction of Dimethyl acryl amid-trimethyl chitosan, as a biodegradable and biocompatible hydrogel, with SWCNT indicated that degradation reaction in acidic condition destructs the polymer, which leads to a smart release in cancerous tissue at specific pH. Moreover, it resolves hydrophilicity, optimum nanoparticle size, cell membrane penetration, and cell toxicity concerns.ConclusionsThe simulation results indicated a marvelous role of dimethyl acryl amide-trimethyl chitosan in the adsorption and release of anticancer drugs in normal and neoplastic tissue. The interaction of trimethyl chitosan also improves biocompatibility as well as biodegradability of the carrier. Overall, that novel drug carrier can be a virtuous nanoparticle for loading, transporting, and releasing the anticancer drugs.


2018 ◽  
Vol 475 (2) ◽  
pp. 373-398 ◽  
Author(s):  
Justine L. Delgado ◽  
Chao-Ming Hsieh ◽  
Nei-Li Chan ◽  
Hiroshi Hiasa

Many cancer type-specific anticancer agents have been developed and significant advances have been made toward precision medicine in cancer treatment. However, traditional or nonspecific anticancer drugs are still important for the treatment of many cancer patients whose cancers either do not respond to or have developed resistance to cancer-specific anticancer agents. DNA topoisomerases, especially type IIA topoisomerases, are proved therapeutic targets of anticancer and antibacterial drugs. Clinically successful topoisomerase-targeting anticancer drugs act through topoisomerase poisoning, which leads to replication fork arrest and double-strand break formation. Unfortunately, this unique mode of action is associated with the development of secondary cancers and cardiotoxicity. Structures of topoisomerase–drug–DNA ternary complexes have revealed the exact binding sites and mechanisms of topoisomerase poisons. Recent advances in the field have suggested a possibility of designing isoform-specific human topoisomerase II poisons, which may be developed as safer anticancer drugs. It may also be possible to design catalytic inhibitors of topoisomerases by targeting certain inactive conformations of these enzymes. Furthermore, identification of various new bacterial topoisomerase inhibitors and regulatory proteins may inspire the discovery of novel human topoisomerase inhibitors. Thus, topoisomerases remain as important therapeutic targets of anticancer agents.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Ayodele T. Odularu ◽  
Peter A. Ajibade ◽  
Johannes Z. Mbese ◽  
Opeoluwa O. Oyedeji

Platinum-group (PG) complexes have been used as antibacterial and anticancer agents since the discovery of cisplatin. The science world still requires improvement on these complexes because of multidrug and antineoplastic resistances. This review observes discoverers and history of these platinum-group metals (PGMs), as well as their beneficial applications. The focus of this study was biological applications of PGMs in relation to human health. Sandwich and half-sandwich PGM coordination compounds and their metal nanoparticles give improved results for biological activities by enhancing efficient delivery of both antibacterial and anticancer drugs, as well as luminescent bioimaging (biomarkers) for biological identifications.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1963
Author(s):  
Qiu-Xu Teng ◽  
Xiaofang Luo ◽  
Zi-Ning Lei ◽  
Jing-Quan Wang ◽  
John Wurpel ◽  
...  

The overexpression of ATP-binding cassette (ABC) transporters is a common cause of multidrug resistance (MDR) in cancers. The intracellular drug concentration of cancer cells can be decreased relative to their normal cell counterparts due to increased expression of ABC transporters acting as efflux pumps of anticancer drugs. Over the past decades, antimicrobial peptides have been investigated as a new generation of anticancer drugs and some of them were reported to have interactions with ABC transporters. In this article, we investigated several novel antimicrobial peptides to see if they could sensitize ABCB1-overexpressing cells to the anticancer drugs paclitaxel and doxorubicin, which are transported by ABCB1. It was found that peptide XH-14C increased the intracellular accumulation of ABCB1 substrate paclitaxel, which demonstrated that XH-14C could reverse ABCB1-mediated MDR. Furthermore, XH-14C could stimulate the ATPase activity of ABCB1 and the molecular dynamic simulation revealed a stable binding pose of XH-14C-ABCB1 complex. There was no change on the expression level or the location of ABCB1 transporter with the treatment of XH-14C. Our results suggest that XH-14C in combination with conventional anticancer agents could be used as a novel strategy for cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document