scholarly journals Comparison of analytical techniques for the identification of bioactive compounds from natural products

2016 ◽  
Vol 33 (10) ◽  
pp. 1131-1145 ◽  
Author(s):  
Łukasz Cieśla ◽  
Ruin Moaddel

Natural product extracts are a rich source of bioactive compounds.

Marine Drugs ◽  
2018 ◽  
Vol 17 (1) ◽  
pp. 19 ◽  
Author(s):  
Nourhan Shady ◽  
Mostafa Fouad ◽  
Mohamed Salah Kamel ◽  
Tanja Schirmeister ◽  
Usama Abdelmohsen

Marine sponges are a very attractive and rich source in the production of novel bioactive compounds. The sponges exhibit a wide range of pharmacological activities. The genus Amphimedon consists of various species, such as viridis, compressa, complanata, and terpenensis, along with a handful of undescribed species. The Amphimedon genus is a rich source of secondary metabolites containing diverse chemical classes, including alkaloids, ceramides, cerebrososides, and terpenes, with various valuable biological activities. This review covers the literature from January 1983 until January 2018 and provides a complete survey of all the compounds isolated from the genus Amphimedon and the associated microbiota, along with their corresponding biological activities, whenever applicable.


2011 ◽  
Vol 7 ◽  
pp. 1622-1635 ◽  
Author(s):  
Jan-Christoph Kehr ◽  
Douglas Gatte Picchi ◽  
Elke Dittmann

Cyanobacteria are prolific producers of natural products. Investigations into the biochemistry responsible for the formation of these compounds have revealed fascinating mechanisms that are not, or only rarely, found in other microorganisms. In this article, we survey the biosynthetic pathways of cyanobacteria isolated from freshwater, marine and terrestrial habitats. We especially emphasize modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) pathways and highlight the unique enzyme mechanisms that were elucidated or can be anticipated for the individual products. We further include ribosomal natural products and UV-absorbing pigments from cyanobacteria. Mechanistic insights obtained from the biochemical studies of cyanobacterial pathways can inspire the development of concepts for the design of bioactive compounds by synthetic-biology approaches in the future.


Proceedings ◽  
2019 ◽  
Vol 41 (1) ◽  
pp. 50
Author(s):  
Ana Bornadiego ◽  
Ana G. Neo ◽  
Jesús Díaz ◽  
Carlos F. Marcos

Pyrrolocarbazoles are important structural motives present in many natural products and pharmaceuticals. Particularly, pyrrolo [3,4-a] carbazole-1,3-diones have attracted much attention as analogues of bioactive compounds, such as anticancer agent granulatimide. Surprisingly, only a few methods for the synthesis of these compounds have been reported in the literature, and they are almost limited to the Diel–Alder cycloaddition of 3-vinylindoles. We have recently developed a multicomponent synthesis of polysubstituted anilines starting from ,-unsaturated carbonyls, isocyanides and dienophiles. Here we report the application of this tandem [4 + 1]–[4 + 2] cycloaddition procedure for the synthesis of 4-amino-5-arylisoindoline-1,3-diones, which are then cyclized by means of a metal catalyzed intramolecular C-N coupling, affording structurally diverse, natural product-like pyrrolo [3,4-a] carbazole-1,3-diones with high yields and selectivities.


2018 ◽  
Vol 13 (12) ◽  
pp. 1934578X1801301
Author(s):  
Ratul Sarkar ◽  
Navriti Mittal ◽  
John Sorensen ◽  
Tuhinadri Sen

The identification of natural products that disrupt biofilm formation has become an area of recently expanded interest in combating antibiotic resistance. The formation of biofilms has been correlated with increased pathogenesis in many strains of Gram-negative bacteria. Molecules that disrupt the formation of biofilms therefore represent a potentially novel way to combat pathogenesis. Lichen natural products are an underexplored source of biofilm disrupting natural products. We have investigated the biofilm disrupting activity of the lichen natural product usnic acid (UA) in comparison to the biosynthetic precursor methylphloroacetophenone (MPA). We have observed in our assays that UA is more bioactive than MPA, suggesting a rationale for the biosynthesis of UA in a wide variety of lichen species. These results suggest that lichen natural products may prove to be a rich source of biofilm inhibitors.


2021 ◽  
Vol 13 (3) ◽  
pp. 219-233
Author(s):  
D.T. Petkova ◽  
D.Sp. Mihaylova

Abstract. The plant kingdom with its natural products, both terrestrial and marine, has been widely studied. Plant-based products have long been used for the prevention and treatment of various diseases. Many natural compounds are reported to have a number of interesting and significant biological activities, such as antioxidant, anti-inflammatory, antitumor, antibacterial, antiviral, antifungal, antiparasitic, analgesic, antidiabetic, antiatherogenic, antiproliferative, and cardioprotective and neuroprotective activities. In order to find a natural product, researchers often explore the possibilities given by nature. Special attention is paid to bioactive compounds synthesized by endemic plants as a specific resource of limited habitat. This review focuses on a brief overview of endemic plants in Bulgaria, most common in the mountainous regions of the country, with the aim to encourage the knowledge of these resources with vast potential for unique biological compounds and specific characteristics beneficial to humans for various purposes.


Marine Drugs ◽  
2019 ◽  
Vol 17 (5) ◽  
pp. 249 ◽  
Author(s):  
Subramani ◽  
Sipkema

Rare actinomycetes are prolific in the marine environment; however, knowledge about their diversity, distribution and biochemistry is limited. Marine rare actinomycetes represent a rather untapped source of chemically diverse secondary metabolites and novel bioactive compounds. In this review, we aim to summarize the present knowledge on the isolation, diversity, distribution and natural product discovery of marine rare actinomycetes reported from mid-2013 to 2017. A total of 97 new species, representing 9 novel genera and belonging to 27 families of marine rare actinomycetes have been reported, with the highest numbers of novel isolates from the families Pseudonocardiaceae, Demequinaceae, Micromonosporaceae and Nocardioidaceae. Additionally, this study reviewed 167 new bioactive compounds produced by 58 different rare actinomycete species representing 24 genera. Most of the compounds produced by the marine rare actinomycetes present antibacterial, antifungal, antiparasitic, anticancer or antimalarial activities. The highest numbers of natural products were derived from the genera Nocardiopsis, Micromonospora, Salinispora and Pseudonocardia. Members of the genus Micromonospora were revealed to be the richest source of chemically diverse and unique bioactive natural products.


2021 ◽  
Author(s):  
Yuliana Zabolotna ◽  
Peter Ertl ◽  
Dragos Horvath ◽  
Fanny Bonachera ◽  
Gilles Marcou ◽  
...  

NP Navigator – a freely available intuitive online tool for visualization and navigation through the chemical space of NPs and NP-like molecules. It is based on the hierarchical ensemble of generative topographic maps, featuring NPs from the COlleCtion of Open NatUral producTs (COCONUT), bioactive compounds from ChEMBL and commercially available molecules from ZINC. NP Navigator allows to efficiently analyze different aspects of NPs - chemotype distribution, physicochemical properties, biological activity and commercial availability of NPs. The latter concerns not only purchasable NPs but also their close analogs that can be considered as synthetic mimetics of NPs or pseudo-NPs.<br>


2007 ◽  
Vol 2 (2) ◽  
pp. 1934578X0700200 ◽  
Author(s):  
Koneni V Sashidhara ◽  
Jammikuntla N Rosaiah

Natural products are the most consistently successful source of drug leads. The rapid identification of known compounds from natural product extracts, or ‘dereplication’, is an important step in an efficiently run drug discovery program. Modern spectroscopic methods have largely revolutionized compound identification and tremendously accelerated the pace at which isolated compounds can be identified. Dereplication strategies use analytical techniques and database searching to determine the identity of an active compound at the earliest possible stage in the discovery process. This prevents wasted effort on samples with no potential for development and allows resources to be focused on the most promising lead. In the past few years, advances in technology have allowed the development of tandem analytical techniques, such as HPLC-PDA, LC-MS, LC-MS-MS, LC-NMR, and LC-NMR-MS. This review describes the principles and performance of a number of hyphenated techniques involving LC-MS that can be used for dereplication of natural products for rapid lead identification.


2019 ◽  
Vol 15 (2) ◽  
pp. 211-231 ◽  
Author(s):  
Sanjai Saxena ◽  
Manmohan Chhibber ◽  
Inder Pal Singh

Background:Exploration of antibiotics from microorganisms became widespread in the academia and the industry with the serendipitous discovery of Penicillin from Penicillium notatum by Sir Alexander Fleming. This embarked the golden era of antibiotics which lasted for over 60 years. However, the traditional phenotypic screening was replaced with more rational and smarter methods of exploration of bioactive compounds from fungi and microorganisms. Fungi have been responsible for providing a variety of bioactive compounds with diverse activities which have been developed into blockbuster drugs such as Cyclosporine, Caspofungin, Lovastatin and Fingolimod etc. It has been reported that ca. 40% of the 1453 New Chemical Entities (NCE’s) approved by USFDA are natural products, natural product inspired or mimics many of which have their origins from fungi. Hence fungal compounds are playing a very important role in drug discovery and development in the pharmaceutical industry.Methods:We undertook structured searches of bibliographic databases of peer-reviewed research literature which pertained to natural products, medicinal chemistry of natural products and drug discovery from fungi. With the strategic improvement in screening and identification methods, fungi are still a potential resource for novel chemistries. Thus the searches also comprised of bioactive agents from fungi isolated or derived from special ecological groups and lineages. To find different molecules derived or isolated from fungi under clinical studies, clinical trial data from the NIH as well as from pharmaceutical companies were also explored. This comprised of data wherein the pharmaceutical industries have acquired or licensed a fungal bioactive compound for clinical study or a trial.Results:Natural product chemistry and medicinal chemistry continue to play an important role in converting a bioactive compound into therapeutic moieties or pharmacophores for new drug development.Conclusion:Thus one can say fungal bioactive compounds are alive and well for development into new drugs as novel ecological groups of fungi as well as novel chemistries are being uncovered. This review further emphasizes the collaboration of fungal biologists with chemists, pharmacologists and biochemists towards the development of newer drugs for taking them into the drug development pipeline.


2021 ◽  
Author(s):  
Yuliana Zabolotna ◽  
Peter Ertl ◽  
Dragos Horvath ◽  
Fanny Bonachera ◽  
Gilles Marcou ◽  
...  

NP Navigator – a freely available intuitive online tool for visualization and navigation through the chemical space of NPs and NP-like molecules. It is based on the hierarchical ensemble of generative topographic maps, featuring NPs from the COlleCtion of Open NatUral producTs (COCONUT), bioactive compounds from ChEMBL and commercially available molecules from ZINC. NP Navigator allows to efficiently analyze different aspects of NPs - chemotype distribution, physicochemical properties, biological activity and commercial availability of NPs. The latter concerns not only purchasable NPs but also their close analogs that can be considered as synthetic mimetics of NPs or pseudo-NPs.<br>


Sign in / Sign up

Export Citation Format

Share Document