Multiscale simulation of shear-induced mechanical anisotropy of binary polymer blends

RSC Advances ◽  
2016 ◽  
Vol 6 (48) ◽  
pp. 41734-41742 ◽  
Author(s):  
Shengwei Deng ◽  
Sanal Sebastian Payyappilly ◽  
Yongmin Huang ◽  
Honglai Liu

The morphologies of binary polymer blends under shear and corresponding mechanical behavior are correlated by sequential mesoscopic simulation method.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Shengwei Li ◽  
Heping Xie ◽  
Ru Zhang ◽  
Mingzhong Gao ◽  
Zetian Zhang ◽  
...  

To study the micro/mesomechanical behaviors of heterogeneous geomaterials, a multiscale simulation method that combines molecular simulation at the microscale, a mesoscale analysis of polished slices, and finite element numerical simulation is proposed. By processing the mesostructure images obtained from analyzing the polished slices of heterogeneous geomaterials and mapping them onto finite element meshes, a numerical model that more accurately reflects the mesostructures of heterogeneous geomaterials was established by combining the results with the microscale mechanical properties of geomaterials obtained from the molecular simulation. This model was then used to analyze the mechanical behaviors of heterogeneous materials. Because kernstone is a typical heterogeneous material that comprises many types of mineral crystals, it was used for the micro/mesoscale mechanical behavior analysis in this paper using the proposed method. The results suggest that the proposed method can be used to accurately and effectively study the mechanical behaviors of heterogeneous geomaterials at the micro/mesoscales.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3233
Author(s):  
Tobias Daniel Horn ◽  
Dario Heidrich ◽  
Hans Wulf ◽  
Michael Gehde ◽  
Jörn Ihlemann

A multiscale simulation method for the determination of mechanical properties of semi-crystalline polymers is presented. First, a four-phase model of crystallization of semi-crystalline polymers is introduced, which is based on the crystallization model of Strobl. From this, a simulation on the nanoscale is derived, which models the formation of lamellae and spherulites during the cooling of the polymer by using a cellular automaton. In the solidified state, mechanical properties are assigned to the formed phases and thus the mechanical behavior of the nanoscale is determined by a finite element (FE) simulation. At this scale, simulations can only be performed up to a simulation range of a few square micrometers. Therefore, the dependence of the mechanical properties on the degree of crystallization is determined by means of homogenization. At the microscale, the cooling of the polymer is simulated by a cellular automaton according to evolution equations. In combination with the mechanical properties determined by homogenization, the mechanical behavior of a macroscopic component can be predicted.


2020 ◽  
Vol 41 (2) ◽  
pp. 109-118
Author(s):  
Esmail Sharifzadeh ◽  
Yasahr Amiri

Abstract In this work, the effects of the morphological variation and the polymer/polymer interface on the tensile modulus of binary polymer blends were evaluated using a combined modeling method. The characteristics of the polymer/polymer interface region were evaluated using a neural network system and the results were used to improve the analytical model. The model accuracy was investigated by comparing its predictions with the tensile test results of some prepared iPP/PA blend samples and also some other data from literature which revealed an acceptable accuracy (error < 5%).


2017 ◽  
Vol 27 (9) ◽  
pp. 1416-1447 ◽  
Author(s):  
Liu Jin ◽  
Shuai Zhang ◽  
Dong Li ◽  
Haibin Xu ◽  
Xiuli Du ◽  
...  

The results of an experimental program on eight short reinforced concrete columns having different structural sizes and axial compression ratios subjected to monotonic/cyclic lateral loading were reported. A 3D mesoscopic simulation method for the analysis of mechanical properties of reinforced concrete members was established, and then it was utilized as an important supplement and extension of the traditional experimental method. Lots of numerical trials, based on the restricted experimental results and the proposed 3D mesoscopic simulation method, were carried out to sufficiently evaluate the seismic performances of short reinforced concrete columns with different structural sizes and axial compression ratios. The test results indicate that (1) the failure pattern of reinforced concrete columns can be significantly affected by the shear-span ratio; (2) increasing the axial compression ratio could improve the load capacity of the reinforced concrete column, but the deformation capacity would be restricted and the failure mode would be more brittle, consequently the energy dissipation capacity could be deteriorated; and (3) the load capacity, the displacement ductility, and the energy dissipation capacity of the short reinforced concrete columns all exhibit clear size effect, namely, the size effect could significantly affect the seismic behavior of reinforced concrete columns.


Langmuir ◽  
2005 ◽  
Vol 21 (17) ◽  
pp. 7921-7936 ◽  
Author(s):  
Chowdhury K. Mamun

Sign in / Sign up

Export Citation Format

Share Document