Sensing of tryptophan by a non-toxic cobalt(ii) complex

RSC Advances ◽  
2016 ◽  
Vol 6 (98) ◽  
pp. 95888-95896 ◽  
Author(s):  
Swapan Kumar Jana ◽  
Amit Kumar Mandal ◽  
Anoop Kumar ◽  
Horst Puschmann ◽  
Maidul Hossain ◽  
...  

The first report of a cobalt(ii) based non-toxic, hemocompatible, fluorescent probe that sense Trp and BSA by reducing internal fluorescence quenching of Trp in aqueous solution.

Author(s):  
Hong-Bo Liu ◽  
Hai Xu ◽  
Xin Guo ◽  
Jian Xiao ◽  
Zheng-Hong Cai ◽  
...  

A near-infrared (NIR) fluorescent probe with a large Stokes shift (143 nm) for the rapid identification of Cys over Hcy and GSH in aqueous solution was developed.


Chemosensors ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 65
Author(s):  
Minji Lee ◽  
Donghwan Choe ◽  
Soyoung Park ◽  
Hyeongjin Kim ◽  
Soomin Jeong ◽  
...  

A novel thiosemicarbazide-based fluorescent sensor (AFC) was developed. It was successfully applied to detect hypochlorite (ClO−) with fluorescence quenching in bis-tris buffer. The limit of detection of AFC for ClO− was analyzed to be 58.7 μM. Importantly, AFC could be employed as an efficient and practical fluorescent sensor for ClO− in water sample and zebrafish. Moreover, AFC showed a marked selectivity to ClO− over varied competitive analytes with reactive oxygen species. The detection process of AFC to ClO− was illustrated by UV–visible and fluorescent spectroscopy and electrospray ionization–mass spectrometry (ESI–MS).


2021 ◽  
Author(s):  
Zhen Li ◽  
Tan Wang ◽  
Xianbao Xu ◽  
Cong Wang ◽  
Daoliang Li

A novel “on–off” fluorescent probe for the determination of ammonia nitrogen has been synthesized. URO can replace PAL into the cavity of CB[7] to form a stable inclusion complex, eventually forming the fluorescence quenching system of URO@CB[7].


2013 ◽  
Vol 295-298 ◽  
pp. 475-478 ◽  
Author(s):  
Zhi Xiang Han ◽  
Ming Hui Du ◽  
Guo Xi Liang ◽  
Xiang Yang Wu

Rhodamine B thiohydrazide (RBS) was firstly employed as turn-on fluorescent probe for hypochlorite in aqueous solution and living cells. It exhibits a stable response to hypochlorite from 1.0×10-6to 1.0×10-5M with a detection limit of 3.3×10-7M. The response of this probe to hypochlorite is fast and highly selective compared with other reactive oxygen species (such as.OH,1O2, H2O2) and other common anions (such as X-, ClO2-, ClO4-, NO3-, NO2-, OH-, Ac-, CO32-, SO42-).


Sign in / Sign up

Export Citation Format

Share Document