Benzoindolic squaraine dyes with a large two-photon absorption cross-section

2017 ◽  
Vol 5 (5) ◽  
pp. 1224-1230 ◽  
Author(s):  
Chun-Lin Sun ◽  
Shao-Kai Lv ◽  
Yan-Ping Liu ◽  
Qing Liao ◽  
Hao-Li Zhang ◽  
...  

Assisted by a new strategy of non-conjugated modifications, we designed a benzoindolic squaraine dye with δ > 12 000 GM and high near-infrared emission, which is ideal for in vitro bioimaging applications.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Wang ◽  
Huang Wu ◽  
Penghao Li ◽  
Su Chen ◽  
Leighton O. Jones ◽  
...  

Abstract Two-photon excited near-infrared fluorescence materials have garnered considerable attention because of their superior optical penetration, higher spatial resolution, and lower optical scattering compared with other optical materials. Herein, a convenient and efficient supramolecular approach is used to synthesize a two-photon excited near-infrared emissive co-crystalline material. A naphthalenediimide-based triangular macrocycle and coronene form selectively two co-crystals. The triangle-shaped co-crystal emits deep-red fluorescence, while the quadrangle-shaped co-crystal displays deep-red and near-infrared emission centered on 668 nm, which represents a 162 nm red-shift compared with its precursors. Benefiting from intermolecular charge transfer interactions, the two co-crystals possess higher calculated two-photon absorption cross-sections than those of their individual constituents. Their two-photon absorption bands reach into the NIR-II region of the electromagnetic spectrum. The quadrangle-shaped co-crystal constitutes a unique material that exhibits two-photon absorption and near-infrared emission simultaneously. This co-crystallization strategy holds considerable promise for the future design and synthesis of more advanced optical materials.


2018 ◽  
Vol 9 (10) ◽  
pp. 2666-2673 ◽  
Author(s):  
Naoya Suzuki ◽  
Kayo Suda ◽  
Daisuke Yokogawa ◽  
Hirotaka Kitoh-Nishioka ◽  
Stephan Irle ◽  
...  

Strapped acceptor–π–donor–π–acceptor type fluorophores exhibit intense near infrared emission, together with near infrared two-photon absorption.


2015 ◽  
Vol 6 (1) ◽  
pp. 761-769 ◽  
Author(s):  
Chun-Lin Sun ◽  
Qing Liao ◽  
Ting Li ◽  
Jun Li ◽  
Jian-Qiao Jiang ◽  
...  

Assisted by theoretical analysis, we designed a small indolic squaraine with δ > 8000 GM at 780 nm, which is ideal for both in vitro and in vivo bio-imaging applications.


Crystals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 119
Author(s):  
Xiaofeng Fan ◽  
Laiqin Gu ◽  
Yiling Hu ◽  
Qi Zhu

Uniformly dispersed luminescent probes with a high brightness and high resolution are desired in bio imaging fields. Here, ~100 nm sized and well-dispersed spheres of RE3+ doped α-NaYF4 (rare earth (RE) = Eu, Tb, Ce, Er, and Tm) have been facile synthesized through hydrothermal processing in the absence of a template, followed by a proper annealing. The processing window of the cubic structured spheres is wide, because the hydrothermal products are independent of the processing conditions, including reaction time and temperature. The original morphology and crystal structure can be well retained with a calcination temperature up to 600 °C. However, calcination gives rise to a reduction of particle sizes, as a result of the crystallite growth and densification. Under ultraviolet radiation, α-NaYF4:RE3+ spheres show characteristic f-f emissions of RE3+ (RE = Eu, Tb, Ce, Er, and Tm), and exhibit orange red, green, ultraviolet (UV), blue green, and blue emissions, respectively. Mainly because of the near-infrared emission at ~697 nm (5D0→7F4 transitions of Eu3+), the successful imaging of macrophages was achieved by NH2-NaYF4:Eu3+ probes, indicating their excellent imaging capacity for cells in vitro.


2013 ◽  
Vol 15 (20) ◽  
pp. 7666 ◽  
Author(s):  
Honghua Hu ◽  
Olga V. Przhonska ◽  
Francesca Terenziani ◽  
Anna Painelli ◽  
Dmitry Fishman ◽  
...  

2021 ◽  
Author(s):  
Biswajit Roy ◽  
Rakesh Mengji ◽  
Samrat Roy ◽  
Bipul Pal ◽  
Avijit Jana ◽  
...  

In recent times, organelle-targeted drug delivery systems gained tremendous attention due to the site specific delivery of active drug molecules resulting in enhanced bioefficacy. In this context, the phototriggered drug delivery system (DDS) for releasing an active molecule is superior as it provides spatial and temporal control over the release. So far, near infrared (NIR) light responsive organelle targeted DDS has not yet been developed. Hence, we introduced a two-photon NIR-light responsive lysosome targeted ʽAIE + ESIPTʼ active single component DDS based on naphthalene chromophore. The Two-photon absorption cross-section of our DDS is 142 GM at 850 nm. The DDS was converted into pure organic nanoparticles for biological applications. Our nano-DDS is capable of selective targeting, AIE-luminogenic imaging, and drug release within the lysosome. In vitro studies using cancerous cell lines showed that our single component photoresponsive nanocarrier exhibited enhanced cytotoxicity and real-time monitoring ability of the drug release.


RSC Advances ◽  
2017 ◽  
Vol 7 (85) ◽  
pp. 53785-53796 ◽  
Author(s):  
Gang Zhao ◽  
Yan Feng ◽  
Shanyi Guang ◽  
Hongyao Xu ◽  
Naibo Lin ◽  
...  

The incorporation of styryl/stilbene–fluorene into polyacetylenes not only endowed the polymers with novel near-infrared optical limiting properties based on a two-photon absorption mechanism but good solubility and high thermal stability.


2019 ◽  
Vol 28 (02) ◽  
pp. 1950015 ◽  
Author(s):  
Huijun Liang ◽  
Qunchao Ma ◽  
Jian Liu ◽  
Xinwei Shi ◽  
Gongjin Yang ◽  
...  

A cuprous oxide (Cu2O) thin film was prepared by radio-frequency (RF) magnetron sputtering. The crystal structure, linear transmission spectrum and film thickness were characterized by X-ray diffraction (XRD), ultraviolet–visible–near infrared (UV–Vis–NIR) absorption spectroscopy and ellipsometry. By performing the pump-probe and [Formula: see text]-scan technique, respectively, nondegenerate and degenerate two-photon absorption (D-TPA) coefficients of the Cu2O thin film at several different excitation wavelengths were experimentally determined. The nondegenerate two-photon absorption (ND-TPA) coefficient always exhibits larger magnitude than the corresponding D-TPA coefficient. In particular, the ND-TPA coefficient shows a maximum value of [Formula: see text][Formula: see text]cm/GW. This study indicates that the cuprous oxide could be a potential material for ultrafast nonlinear photonic devices based on two-photon absorption due to its large ND-TPA coefficient.


2020 ◽  
Vol 11 (9) ◽  
pp. 2494-2503 ◽  
Author(s):  
Zheng Zheng ◽  
Haixiang Liu ◽  
Shaodong Zhai ◽  
Haoke Zhang ◽  
Guogang Shan ◽  
...  

Mitochondria-targeted photosensitizers with highly efficient singlet oxygen generation, bright near-infrared AIE and good two-photon absorption are obtained through ingenious molecular engineering for cancer cell-selective photodynamic therapy.


Sign in / Sign up

Export Citation Format

Share Document