scholarly journals Carrier-free, self-assembled pure drug nanorods composed of 10-hydroxycamptothecin and chlorin e6 for combinatorial chemo-photodynamic antitumor therapy in vivo

Nanoscale ◽  
2017 ◽  
Vol 9 (38) ◽  
pp. 14347-14356 ◽  
Author(s):  
Yan Wen ◽  
Wei Zhang ◽  
Ningqiang Gong ◽  
Yi-Feng Wang ◽  
Hong-Bo Guo ◽  
...  

Carrier-free nanodrug HCPT/Ce6 NRs were prepared through a simple self-assembly approach for chemo-photodynamic combination therapy of tumors in vivo.

2020 ◽  
Vol 117 (26) ◽  
pp. 14667-14675 ◽  
Author(s):  
Mingchao Zhang ◽  
Rui Guo ◽  
Ke Chen ◽  
Yiliang Wang ◽  
Jiali Niu ◽  
...  

Many natural materials possess built-in structural variation, endowing them with superior performance. However, it is challenging to realize programmable structural variation in self-assembled synthetic materials since self-assembly processes usually generate uniform and ordered structures. Here, we report the formation of asymmetric microribbons composed of directionally self-assembled two-dimensional nanoflakes in a polymeric matrix during three-dimensional direct-ink printing. The printed ribbons with embedded structural variations show site-specific variance in their mechanical properties. Remarkably, the ribbons can spontaneously transform into ultrastretchable springs with controllable helical architecture upon stimulation. Such springs also exhibit superior nanoscale transport behavior as nanofluidic ionic conductors under even ultralarge tensile strains (>1,000%). Furthermore, to show possible real-world uses of such materials, we demonstrate in vivo neural recording and stimulation using such springs in a bullfrog animal model. Thus, such springs can be used as neural electrodes compatible with soft and dynamic biological tissues.


2016 ◽  
Vol 8 (21) ◽  
pp. 13262-13269 ◽  
Author(s):  
Ruiyun Zhang ◽  
Ruirui Xing ◽  
Tifeng Jiao ◽  
Kai Ma ◽  
Chengjun Chen ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1014
Author(s):  
Zijiao Zhang ◽  
Ni Kou ◽  
Weilong Ye ◽  
Shuo Wang ◽  
Jiaju Lu ◽  
...  

Background: Infection that is related to implanted biomaterials is a serious issue in the clinic. Antimicrobial peptides (AMPs) have been considered as an ideal alternative to traditional antibiotic drugs, for the treatment of infections, while some problems, such as aggregation and protein hydrolysis, are still the dominant concerns that compromise their antimicrobial efficiency in vivo. Methods: In this study, antimicrobial peptides underwent self-assembly on gold substrates, forming good antibacterial surfaces, with stable antibacterial behavior. The antimicrobial ability of AMPs grafted on the surfaces, with or without glycine spaces or a primer layer, was evaluated. Results: Specifically, three Pac-525 derivatives, namely, Ac-CGn-KWRRWVRWI-NH2 (n = 0, 2, or 6) were covalently grafted onto gold substrates via the self-assembling process for inhibiting the growth of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Furthermore, the alkanethiols HS(CH)10SH were firstly self-assembled into monolayers, as a primer layer (SAM-SH) for the secondary self-assembly of Pac-525 derivatives, to effectively enhance the bactericidal performance of the grafted AMPs. The -(CH)10-S-S-G6Pac derivative was highly effective against S. aureus and E. coli, and reduced the viable amount of E. coli and S. aureus to 0.4% and 33.2%, respectively, after 24 h of contact. In addition, the immobilized AMPs showed good biocompatibility, promoting bone marrow stem cell proliferation. Conclusion: the self-assembled monolayers of the Pac-525 derivatives have great potential as a novel therapeutic method for the treatment of implanted biomaterial infections.


Author(s):  
Samantha P Macchi ◽  
Amanda Jalihal ◽  
Nasrin Hooshmand ◽  
Mohd Zubair ◽  
Nabeel Alwan ◽  
...  

Combination nanodrugs are promising therapeutic agents for cancer treatment. However, they often require the use of complex nanovehicles for transportation into the tumor site. Herein, a new class of carrier-free...


Nanoscale ◽  
2019 ◽  
Vol 11 (34) ◽  
pp. 15907-15916 ◽  
Author(s):  
Zhuha Zhou ◽  
Ying Piao ◽  
Lingqiao Hao ◽  
Guanyu Wang ◽  
Zhuxian Zhou ◽  
...  

pH-responsive nanofibers are obtained by the self-assembly of the camptothecin prodrug and surface-coating, which can efficiently enter cancer cells in vitro and penetrate deep into tumor tissue in vivo.


Nanoscale ◽  
2021 ◽  
Author(s):  
Nandini Bhandaru ◽  
Gagandeep Kaur ◽  
Apurva Panjla ◽  
Sandeep Verma

Controlling the morphology and nanostructure of self-assembled peptide molecules is of fundamental importance to chemistry and material science due to their bioactivity in both in vivo and in vitro settings,...


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Liya Li ◽  
Wangxiao He ◽  
Weiming You ◽  
Jin Yan ◽  
Wenjia Liu

Abstract Background Clinical translation of therapeutic nuclear acid, particularly those targeting tumor progression, has been hampered by the intrinsic weaknesses of nuclear acid therapeutic including poor systemic stability, rapid clearance, low membrane permeability and lack of targeting ability. Small nuclear acid engineered into carrier-free nanodrugs with structural stability and disease targeting may be viable to overcome pharmaceutical obstacles of nuclear acid. Methods A general method through a mild and simple chemistry was established to convert therapeutic miRNA into an infinite Auric-sulfhydryl coordination supramolecular miRNA termed IacsRNA with near-spherical nanostructure, high colloid as well as anti-hydrolysis stability and low macrophage uptakes. Results IacsRNA presented the increased half-life period in circulation and accumulation at tumor sites in comparison to normal miRNA. Moreover, Iacs-miR-30c showed no toxicity of viscera and sanguis system in the 5-time injection dosage of the treatment. More importantly, Iacs-miR-30c potently suppressed the Wnt signaling pathway in vitro and in vivo, and effectively sensitized both potency of 5-Fu in PDX model of colon cancer and Anti-PD1 in B16F10 homograft model of melanoma. Conclusion Collectively, this work amply confirmed the design of IacsRNA as a general and viable strategy of nano-pharmaceutic to concert flimsy therapeutic miRNA into potential drugs. Considering from a broader perspective, the miRNA-initiated infinite coordination self-assembly strategy has distinct advantages in resurrecting nuclear acid therapeutics, probably bringing new inspiration to RNA-derived therapeutics of a great variety of human diseases including cancer. Graphical Abstract


2020 ◽  
Vol 21 (4) ◽  
pp. 401-412 ◽  
Author(s):  
Sreekanth Pentlavalli ◽  
Sophie Coulter ◽  
Garry Laverty

Self-assembled peptides have been shown to form well-defined nanostructures which display outstanding characteristics for many biomedical applications and especially in controlled drug delivery. Such biomaterials are becoming increasingly popular due to routine, standardized methods of synthesis, high biocompatibility, biodegradability and ease of upscale. Moreover, one can modify the structure at the molecular level to form various nanostructures with a wide range of applications in the field of medicine. Through environmental modifications such as changes in pH and ionic strength and the introduction of enzymes or light, it is possible to trigger self-assembly and design a host of different self-assembled nanostructures. The resulting nanostructures include nanotubes, nanofibers, hydrogels and nanovesicles which all display a diverse range of physico-chemical and mechanical properties. Depending on their design, peptide self-assembling nanostructures can be manufactured with improved biocompatibility and in vivo stability and the ability to encapsulate drugs with the capacity for sustained drug delivery. These molecules can act as carriers for drug molecules to ferry cargo intracellularly and respond to stimuli changes for both hydrophilic and hydrophobic drugs. This review explores the types of self-assembling nanostructures, the effects of external stimuli on and the mechanisms behind the assembly process, and applications for such technology in drug delivery.


2018 ◽  
Vol 6 (7) ◽  
pp. 1882-1891 ◽  
Author(s):  
Pei-Xin Lai ◽  
Ju-Yi Mao ◽  
Binesh Unnikrishnan ◽  
Han-Wei Chu ◽  
Chien-Wei Wu ◽  
...  

Self-assembly of a bivalent thrombin-binding aptamer on graphene oxide that is easy to prepare, cost-effective, and highly biocompatible and shows in vivo anticoagulant activity.


Sign in / Sign up

Export Citation Format

Share Document