Insights into the structure-induced catalysis dependence of simply engineered one-dimensional zinc oxide nanocrystals towards photocatalytic water purification

2017 ◽  
Vol 4 (12) ◽  
pp. 2075-2087 ◽  
Author(s):  
Jinyan Xiong ◽  
Yixin Gan ◽  
Jiaxin Zhu ◽  
Wei Li ◽  
Chao Gao ◽  
...  

One-dimensional nanocrystalline semiconductors have been comprehensively studied because of their fascinating properties and practical applications in various fields.

2021 ◽  
Vol 263 ◽  
pp. 124376
Author(s):  
Ahmed A. Askar ◽  
Mohamed S. Selim ◽  
Sherif A. El-Safty ◽  
Ahmed I. Hashem ◽  
Mahmoud M. Selim ◽  
...  

2017 ◽  
Vol 31 (35) ◽  
pp. 1750332
Author(s):  
Yu-Rong Liu ◽  
Jie Liu ◽  
Jia-Qi Song ◽  
Pui-To Lai ◽  
Ruo-He Yao

An amorphous indium–gallium–zinc–oxide (a-IGZO) thin-film transistor (TFT) with a planar split dual gate (PSDG) structure has been proposed, fabricated and characterized. Experimental results indicate that the two independent gates can provide dynamical control of device characteristics such as threshold voltage, sub-threshold swing, off-state current and saturation current. The transconductance extracted from the output characteristics of the device increases from [Formula: see text] to [Formula: see text] for a change of control gate voltage from −2 V to 2 V, and thus the device could be used in a variable-gain amplifier. A significant advantage of the PSDG structure is its flexibility in controlling the device performance according to the need of practical applications.


Author(s):  
Andrey Sharapov ◽  
Igor Matyushkin

In this work, the formation of zinc oxide arrows by gas-phase growth on the surface of silicon oxide is simulated.


2014 ◽  
Vol 77 (9) ◽  
pp. 1599-1604 ◽  
Author(s):  
MAHBOUBEH MIRHOSSEINI ◽  
VAHID ARJMAND

Practical applications of different concentrations (0, 1, 2, 4, 6, and 8 mM) of zinc oxide (ZnO) suspensions containing 1% acetic acid were investigated against the pathogenic bacteria Listeria monocytogenes, Escherichia coli, Staphylococcus aureus, and Bacillus cereus. ZnO suspensions (0, 1, 3, 6, and 8 mM) containing acetic acid had a significant inhibitory effect on the growth of L. monocytogenes, E. coli, and S. aureus during 12 h of incubation, and the 8 mM suspensions of ZnO were the most effective against all the strains. These data suggested that the antibacterial activity of ZnO was concentration dependent. Thus, 6 and 8 mM ZnO were selected for further studies in meat. ZnO nanoparticles reduced initial growth of all inoculated strains in meat. To our knowledge, this is the first report describing the antibacterial activity of ZnO nanoparticles in meat and indicates the potential of these nanoparticles as an antibacterial agent in the food industry.


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 680
Author(s):  
Seungil Jo ◽  
Hyunsoo Kim ◽  
Nae-Man Park

The growth of one-dimensional nanostructures without a metal catalyst via a simple solution method is of considerable interest due to its practical applications. In this study, the growth of amorphous silicon (a-Si) nanotips was investigated using an aqueous solution dropped onto the Si substrate, followed by drying at room temperature or below for 24 h, resulting in the formation of a-Si nanotips on the Si substrate. Typically, the a-Si nanotips were up to 1.6 μm long, with average top and middle diameters of 30 and 80 nm, respectively, and contained no metal catalyst in their structure. The growth of a-Si nanotips can be explained in terms of the liquid–solid mechanism, where the supercritical Si solution (liquid) generated on the Si substrate (after reaction with the aqueous solution) promotes the nucleation of solid Si (acting as seeds) on the roughened surface, followed by surface diffusion of Si atoms along the side wall of the Si seeds. This is very similar to the phenomenon observed in the growth of snow ice crystals in nature. When photoexcited at 265 nm, the a-Si nanotips showed blue luminescence at around 435 nm (2.85 eV), indicating feasible applicability of the nanotips in optoelectronic functional devices.


Author(s):  
Natasha L. Smith ◽  
Brandon S. Field

This paper describes an integrated laboratory project between separate heat transfer and machine design courses. The project was structured around a Jominy end quench hardenability test. Most of the students participating were simultaneously enrolled in both classes. In the heat transfer class, students were required to model one-dimensional, transient thermal conduction for an end quench geometry of 4140 steel. In machine design, students applied their theoretical temperature profiles to a continuous cooling transformation curve (CCT) of 4140 steel to predict microstructure and matched the theoretical cooling rates with hardenability curves from literature to predict hardness. In laboratory, students then performed an end quench test in accordance with ASTM A255 on four steel rods. By combining activities across the two courses, students developed an appreciation for the interconnectivity of material within the engineering curriculum, and learned that practical applications typically require they employ knowledge from a variety of sources.


Author(s):  
Jie Chen ◽  
Wei Lei ◽  
Xiaobing Zhang ◽  
Yunsong Di ◽  
Kairong Chu ◽  
...  

2006 ◽  
Vol 17 (22) ◽  
pp. 5556-5560 ◽  
Author(s):  
Y H Yang ◽  
B Wang ◽  
G W Yang

2003 ◽  
Vol 01 (02) ◽  
pp. 153-188 ◽  
Author(s):  
Berthold-Georg Englert ◽  
Krzysztof Wódkiewicz

Gaussian states — or, more generally, Gaussian operators — play an important role in Quantum Optics and Quantum Information Science, both in discussions about conceptual issues and in practical applications. We describe, in a tutorial manner, a systematic operator method for first characterizing such states and then investigating their properties. The central numerical quantities are the covariance matrix that specifies the characteristic function of the state, and the closely related matrices associated with Wigner's and Glauber's phase space functions. For pedagogical reasons, we restrict the discussion to one-dimensional and two-dimensional Gaussian states, for which we provide illustrating and instructive examples.


Sign in / Sign up

Export Citation Format

Share Document