Technical synthesis and biomedical applications of graphene quantum dots

2017 ◽  
Vol 5 (25) ◽  
pp. 4811-4826 ◽  
Author(s):  
Keheng Li ◽  
Wei Liu ◽  
Yao Ni ◽  
Dapeng Li ◽  
Dongmei Lin ◽  
...  

A comprehensive review on the technical synthesis and biomedical applications of graphene quantum dots was presented.

2021 ◽  
Author(s):  
Lakshmi Narashimhan Ramana ◽  
Le N.M. Dinh ◽  
Vipul Agarwal

Graphene quantum dots (GQDs) continue to draw interest in biomedical applications. However, their efficacy gets compromised due to their rapid clearance from body. On one side, rapid clearance is desired...


RSC Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 2253-2291
Author(s):  
Amin Shiralizadeh Dezfuli ◽  
Elmira Kohan ◽  
Sepand Tehrani Fateh ◽  
Neda Alimirzaei ◽  
Hamidreza Arzaghi ◽  
...  

Organic dots is a term used to represent materials including graphene quantum dots and carbon quantum dots because they rely on the presence of other atoms (O, H, and N) for their photoluminescence or fluorescence properties. Cargo delivery, bio-imaging, photodynamic therapy and photothermal therapy are major biomedical applications of organic dots.


2018 ◽  
Vol 25 (25) ◽  
pp. 2876-2893 ◽  
Author(s):  
Keheng Li ◽  
Xinna Zhao ◽  
Gang Wei ◽  
Zhiqiang Su

Fluorescent graphene quantum dots (GQDs) have attracted increasing interest in cancer bioimaging due to their stable photoluminescence (PL), high stability, low cytotoxicity, and good biocompatibility. In this review, we present the synthesis and chemical modification of GQDs firstly, and then introduce their unique physical, chemical, and biological properties like the absorption, PL, and cytotoxicity of GQDs. Finally and most importantly, the recent applications of GQDs in cancer bioimaging are demonstrated in detail, in which we focus on the biofunctionalization of GQDs for specific cancer cell imaging and real-time molecular imaging in live cells. We expect this work would provide valuable guides on the synthesis and modification of GQDs with adjustable properties for various biomedical applications in the future.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6926
Author(s):  
Luis Castillo-Henríquez ◽  
Mariana Brenes-Acuña ◽  
Arianna Castro-Rojas ◽  
Rolando Cordero-Salmerón ◽  
Mary Lopretti-Correa ◽  
...  

Biosensors are measurement devices that can sense several biomolecules, and are widely used for the detection of relevant clinical pathogens such as bacteria and viruses, showing outstanding results. Because of the latent existing risk of facing another pandemic like the one we are living through due to COVID-19, researchers are constantly looking forward to developing new technologies for diagnosis and treatment of infections caused by different bacteria and viruses. Regarding that, nanotechnology has improved biosensors’ design and performance through the development of materials and nanoparticles that enhance their affinity, selectivity, and efficacy in detecting these pathogens, such as employing nanoparticles, graphene quantum dots, and electrospun nanofibers. Therefore, this work aims to present a comprehensive review that exposes how biosensors work in terms of bacterial and viral detection, and the nanotechnological features that are contributing to achieving a faster yet still efficient COVID-19 diagnosis at the point-of-care.


RSC Advances ◽  
2019 ◽  
Vol 9 (24) ◽  
pp. 13658-13663 ◽  
Author(s):  
Sukhyun Kang ◽  
Jeong Ho Ryu ◽  
Byoungsoo Lee ◽  
Kyung Hwan Jung ◽  
Kwang Bo Shim ◽  
...  

Graphene quantum dots (GQDs) and graphene oxide quantum dots (GOQDs) can be selectively produced by wavelength-modulated pulsed laser ablation in liquid (PLAL) method, which can used in different applications such as optoelectronic and biomedical applications, respectively.


2020 ◽  
pp. 174751982097393
Author(s):  
Jialu Shen ◽  
Weifeng Chen ◽  
Xiang Liu

A facile and effective route to synthesize graphene quantum dots for cell imaging and as a deoxidizer by using glucan as a precursor is developed. AuNPs are successfully synthesized by mixing of graphene quantum dots and Au(III) salts without any additional reductants. The reducing driving force of these graphene quantum dots is much weaker than that of strong reducing agents such as NaBH4. The sizes of the as-synthesized AuNPs are much larger, with an average size of 15 nm. Notably, this size range is specifically useful and optimal for the application of AuNPs in biomedical applications. In addition, the as-synthesized graphene quantum dots are also successfully applied in cell imaging.


2013 ◽  
Author(s):  
Olga E. Glukhova ◽  
Igor N. Saliy ◽  
Anna S. Kolesnikova ◽  
Elena L. Kossovich ◽  
Michael M. Slepchenkov

Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 319
Author(s):  
Anuja Bokare ◽  
Sowbaranigha Chinnusamy ◽  
Folarin Erogbogbo

The focus of current research in material science has shifted from “less efficient” single-component nanomaterials to the superior-performance, next-generation, multifunctional nanocomposites. TiO2 is a widely used benchmark photocatalyst with unique physicochemical properties. However, the large bandgap and massive recombination of photogenerated charge carriers limit its overall photocatalytic efficiency. When TiO2 nanoparticles are modified with graphene quantum dots (GQDs), some significant improvements can be achieved in terms of (i) broadening the light absorption wavelengths, (ii) design of active reaction sites, and (iii) control of the electron-hole (e−-h+) recombination. Accordingly, TiO2-GQDs nanocomposites exhibit promising multifunctionalities in a wide range of fields including, but not limited to, energy, biomedical aids, electronics, and flexible wearable sensors. This review presents some important aspects of TiO2-GQDs nanocomposites as photocatalysts in energy and biomedical applications. These include: (1) structural formulations and synthesis methods of TiO2-GQDs nanocomposites; (2) discourse about the mechanism behind the overall higher photoactivities of these nanocomposites; (3) various characterization techniques which can be used to judge the photocatalytic performance of these nanocomposites, and (4) the application of these nanocomposites in biomedical and energy conversion devices. Although some objectives have been achieved, new challenges still exist and hinder the widespread application of these nanocomposites. These challenges are briefly discussed in the Future Scope section of this review.


Sign in / Sign up

Export Citation Format

Share Document