A T7 exonuclease-RCA dual amplification system for high-sensitivity and high-selectivity analysis of microRNA

2019 ◽  
Vol 11 (18) ◽  
pp. 2450-2455 ◽  
Author(s):  
Yan Xu ◽  
Yan Li ◽  
Hongkun Zhou ◽  
Xiaoping Mei ◽  
Jieyun Ye ◽  
...  

A novel combination of rolling circle amplification and T7 exonuclease-assisted amplification to achieve highly sensitive and selective detection of microRNA molecules was developed.

RSC Advances ◽  
2014 ◽  
Vol 4 (51) ◽  
pp. 27091-27097 ◽  
Author(s):  
Qingwang Xue ◽  
Yanqin Lv ◽  
Yuanfu Zhang ◽  
Shuling Xu ◽  
Qiaoli Yue ◽  
...  

A novel label-free amplified fluorescent sensing scheme based on target-responsive dumbbell probe-mediated rolling circle amplification (D-RCA) has been developed for sensitive and selective detection of mercuric ions.


2014 ◽  
Vol 50 (13) ◽  
pp. 1576-1578 ◽  
Author(s):  
Liang Cui ◽  
Zhi Zhu ◽  
Ninghang Lin ◽  
Huimin Zhang ◽  
Zhichao Guan ◽  
...  

A T7 exonuclease-assisted cyclic enzymatic amplification method (CEAM) was combined with rolling circle amplification (RCA) to develop a RCA–CEAM dual amplification method for ultrasensitive detection of microRNA with excellent selectivity.


Chemosensors ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 52
Author(s):  
Qian Ma ◽  
Zhiqiang Gao ◽  
Hiranya Dayal ◽  
Sam Fong Yau Li

In this work, a simple and label-free fluorescence “off” to “on” platform was designed for the sensitive and selective detection of microRNA (miRNA) in cancer cells. This method utilized a padlock DNA-based rolling circle amplification (P-RCA) to synthesize fluorescent poly(thymine) (PolyT) which acted as a template for the synthesis of copper nanoparticles (CuNPs) within 10 minutes under mild conditions. While the repeated PolyT sequence was used as the template for CuNP synthesis, other non-PolyT parts (single strand-DNAs without the capacity to act as the template for CuNP formation) served as “smart glues” or rigid linkers to build complex nanostructures. Under the excitation wavelength of 340 nm, the synthesized CuNPs emitted strong red fluorescence effectively at 620 nm. To demonstrate the use of this method as a universal biosensor platform, lethal-7a (let-7a) miRNA was chosen as the standard target. This sensor could achieve highly sensitive and selective detection of miRNA in the presence of other homologous analogues for the combination of P-RCA with the fluorescent copper nanoparticle. Overall, this novel label-free method holds great potential in the sensitive detection of miRNA with high specificity in real samples.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2017
Author(s):  
Chen Liu ◽  
Jialun Han ◽  
Lujian Zhou ◽  
Jingjing Zhang ◽  
Jie Du

MicroRNAs regulate and control the growth and development of cells and can play the role of oncogenes and tumor suppressor genes, which are involved in the occurrence and development of cancers. In this study, DNA fragments obtained by target-induced rolling-circle amplification were constructed to complement with self-cleaving deoxyribozyme (DNAzyme) and release fluorescence biomolecules. This sensing approach can affect multiple signal amplification permitting fluorescence detection of microRNAs at the pmol L−1 level hence affording a simple, highly sensitive, and selective low cost detection platform.


The Analyst ◽  
2021 ◽  
Author(s):  
Mingjian Chen ◽  
Yang Li ◽  
Peng Li ◽  
Wanni Guo ◽  
Yuxin Yang ◽  
...  

An effective ATP fluorescent sensing method was developed via the coupled using of rolling circle amplification and DNAzymes, which exhibited merits including high sensitivity and specificity, simplicity in design, and potential universality.


RSC Advances ◽  
2020 ◽  
Vol 10 (45) ◽  
pp. 26824-26833 ◽  
Author(s):  
Ke Yang ◽  
Wenjing Yu ◽  
Guorong Huang ◽  
Jie Zhou ◽  
Xiang Yang ◽  
...  

A highly sensitive method for detecting Staphylococcus aureus (S. aureus) is urgently needed to reduce the impact and spread of hospital-acquired infections and food-borne illness.


Nano LIFE ◽  
2015 ◽  
Vol 05 (02) ◽  
pp. 1541002 ◽  
Author(s):  
Emil L. Kristoffersen ◽  
Maria Gonzalez ◽  
Magnus Stougaard ◽  
Cinzia Tesauro

Here we present an optimized readout format for detection of the circularized products from a DNA-based sensor for measurement of DNA-modifying enzymes including DNA Topoisomerase I. The basic design of the DNA-sensor relies on the use of a substrate that can be circularized by the activity of DNA-modifying enzymes like type IB Topoisomerases and subsequently amplified by a rolling circle amplification (RCA) mechanism. The RCA process can be followed in real-time by the addition of a molecular beacon with a fluorophore/quencher pair. Upon hybridization to the amplified product, the fluorophore/quencher pair is separated, giving rise to a fluorescent signal, measurable in pseudo real-time using a qPCR machine or in a fluorimeter. The RCA products in complex with the molecular beacon can subsequently be moved to microscopic slides and analyzed in a fluorescence microscope. We describe the proof of the principle of this molecular beacon-based method combining the qPCR readout format with the standard Rolling circle Enhanced Enzymatic Assay previously reported. Although the qPCR setup is less sensitive, it allows easy, fast, and high-throughput measurement of enzyme activities. Human Topoisomerase IB (TopIB) is a well-known target for the clinically used anticancer drugs of the camptothecin family. The cytotoxic effect of camptothecins correlates directly with the intracellular TopIB activity affecting reversibly the Topoisomerase/DNA cleavage complexes. Therefore, we envisioned that the presented method may find use for the prediction of cellular drug response and for drug screening to discover novel molecules that specifically inhibit TopIB or other DNA-modifying enzymes.


2018 ◽  
Vol 5 (8) ◽  
pp. 1990-1999 ◽  
Author(s):  
Xiaoyan Chen ◽  
Haihui Pu ◽  
Zipeng Fu ◽  
Xiaoyu Sui ◽  
Jingbo Chang ◽  
...  

A benzyltriethylammonium chloride-modified graphene field-effect transistor sensor has high sensitivity, high selectivity and rapid response for nitrate detection.


Sign in / Sign up

Export Citation Format

Share Document