scholarly journals Adipose-derived stem cell-secreted factors promote early stage follicle development in a biomimetic matrix

2019 ◽  
Vol 7 (2) ◽  
pp. 571-580 ◽  
Author(s):  
Claire E. Tomaszewski ◽  
Elizabeth Constance ◽  
Melissa M. Lemke ◽  
Hong Zhou ◽  
Vasantha Padmanabhan ◽  
...  

ADSCs encapsulated in biomimetic PEG hydrogels maintain stemness and secrete survival- and growth-promoting factors that support in vitro folliculogenesis.

Zygote ◽  
2020 ◽  
pp. 1-5
Author(s):  
Li Ang ◽  
Cao Haixia ◽  
Li Hongxia ◽  
Li Ruijiao ◽  
Guo Xingping ◽  
...  

Summary The present study investigated the effects of c-type natriuretic peptide (CNP) on the development of murine preantral follicles during in vitro growth (IVG). Preantral follicles isolated from ovaries of Kunming mice were cultured in vitro. In the culture system, CNP was supplemented in the experimental groups and omitted in the control groups. In Experiment 1, CNP was only supplemented at the early stage and follicle development was evaluated. In Experiments 2 and 3, CNP was supplemented during the whole period of in vitro culture. In Experiment 2, follicle development and oocyte maturity were evaluated. In Experiment 3, follicle development and embryo cleavage after in vitro fertilization (IVF) were assessed. The results showed that in the control groups in all three experiments, granulosa cells migrated from within the follicle and the follicles could not reach the antral stage. In the experimental groups in all three experiments, no migration of granulosa cells was observed and follicle development was assessed as attaining the antral stage, which was significantly superior to that of the control group (P < 0.0001). Oocyte meiotic arrest was effectively maintained, hence giving good developmental competence. In conclusion, CNP supplementation in the culture system during IVG benefited the development of murine preantral follicles.


2016 ◽  
Vol 22 (7) ◽  
pp. 679-690 ◽  
Author(s):  
Thanavel Rajangam ◽  
Min Hee Park ◽  
Sang-Heon Kim

2011 ◽  
Vol 28 (1) ◽  
pp. 196-205 ◽  
Author(s):  
Bingyang Shi ◽  
Lei Deng ◽  
Xiaolin Shi ◽  
Sheng Dai ◽  
Hu Zhang ◽  
...  

2018 ◽  
Vol 63 (5) ◽  
pp. 272-274 ◽  
Author(s):  
Yanghua Shi ◽  
Lian Wang ◽  
Yichang Li ◽  
Congdi Xu ◽  
Xiaowen Shao ◽  
...  

2020 ◽  
Vol 17 (5) ◽  
pp. 1282-1290
Author(s):  
Dong Yeon Kim ◽  
Eunjin Kim ◽  
Ki Joo Kim ◽  
Young‐Joon Jun ◽  
Jong‐Won Rhie

Author(s):  
Sunhyae Jang ◽  
Jungyoon Ohn ◽  
Bo Mi Kang ◽  
Minji Park ◽  
Kyu Han Kim ◽  
...  

Alopecia arises due to inadequate hair follicle (HF) stem cell activation or proliferation, resulting in prolongation of the telogen phase of the hair cycle. Increasing therapeutic and cosmetic demand for alleviating alopecia has driven research toward the discovery or synthesis of novel compounds that can promote hair growth by inducing HF stem cell activation or proliferation and initiating the anagen phase. Although several methods for evaluating the hair growth-promoting effects of candidate compounds are being used, most of these methods are difficult to use for large scale simultaneous screening of various compounds. Herein, we introduce a simple and reliable in vitro assay for the simultaneous screening of the hair growth-promoting effects of candidate compounds on a large scale. In this study, we first established a 3D co-culture system of human dermal papilla (hDP) cells and human outer root sheath (hORS) cells in an ultra-low attachment 96-well plate, where the two cell types constituted a polar elongated structure, named “two-cell assemblage (TCA).” We observed that the long axis length of the TCA gradually increased for 5 days, maintaining biological functional integrity as reflected by the increased expression levels of hair growth-associated genes after treatment with hair growth-promoting molecules. Interestingly, the elongation of the TCA was more prominent following treatment with the hair growth-promoting molecules (which occurred in a dose-dependent manner), compared to the control group (p &lt; 0.05). Accordingly, we set the long axis length of the TCA as an endpoint of this assay, using a micro confocal high-content imaging system to measure the length, which can provide reproducible and reliable results in an adequate timescale. The advantages of this assay are: (i) it is physiologically and practically advantageous as it uses 3D cultured two-type human cells which are easily available; (ii) it is simple as it uses length as the only endpoint; and (iii) it is a high throughput system, which screens various compounds simultaneously. In conclusion, the “TCA” assay could serve as an easy and reliable method to validate the hair growth-promoting effect of a large volume of library molecules.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Francis Grafton ◽  
Jaclyn Ho ◽  
Sara Ranjbarvaziri ◽  
Farshad Farshidfar ◽  
Anastasiia Budan ◽  
...  

Drug-induced cardiotoxicity and hepatotoxicity are major causes of drug attrition. To decrease late-stage drug attrition, pharmaceutical and biotechnology industries need to establish biologically relevant models that use phenotypic screening to detect drug-induced toxicity in vitro. In this study, we sought to rapidly detect patterns of cardiotoxicity using high-content image analysis with deep learning and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). We screened a library of 1280 bioactive compounds and identified those with potential cardiotoxic liabilities in iPSC-CMs using a single-parameter score based on deep learning. Compounds demonstrating cardiotoxicity in iPSC-CMs included DNA intercalators, ion channel blockers, epidermal growth factor receptor, cyclin-dependent kinase, and multi-kinase inhibitors. We also screened a diverse library of molecules with unknown targets and identified chemical frameworks that show cardiotoxic signal in iPSC-CMs. By using this screening approach during target discovery and lead optimization, we can de-risk early-stage drug discovery. We show that the broad applicability of combining deep learning with iPSC technology is an effective way to interrogate cellular phenotypes and identify drugs that may protect against diseased phenotypes and deleterious mutations.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaoru Xu ◽  
Kaixiu Fang ◽  
Lifeng Wang ◽  
Xiangwei Liu ◽  
Yuchao Zhou ◽  
...  

Bone tissue regeneration is considered to be the optimal solution for bone loss. However, diabetic patients have a greater risk of poor bone healing or bone grafting failure than nondiabetics. The purpose of this study was to investigate the influence of the complexes of an adipose-derived stem cell sheet (ASC sheet) and Bio-Oss® bone granules on bone healing in type 2 diabetes mellitus (T2DM) rats with the addition of semaphorin 3A (Sema3A). The rat ASC sheets showed stronger osteogenic ability than ASCs in vitro, as indicated by the extracellular matrix mineralization and the expression of osteogenesis-related genes at mRNA level. An ASC sheet combined with Bio-Oss® bone granules promoted bone formation in T2DM rats as indicated by microcomputed tomography (micro-CT) and histological analysis. In addition, Sema3A promoted the osteogenic differentiation of ASC sheets in vitro and local injection of Sema3A promoted T2DM rats’ calvarial bone regeneration based on ASC sheet and Bio-Oss® bone granule complex treatment. In conclusion, the local injection of Sema3A and the complexes of ASC sheet and Bio-Oss® bone granules could promote osseous healing and are potentially useful to improve bone healing for T2DM patients.


Sign in / Sign up

Export Citation Format

Share Document