Wheat bran and oat hulls have dose-dependent effects on ad-libitum feed intake in pigs related to digesta hydration and colonic fermentation

2019 ◽  
Vol 10 (12) ◽  
pp. 8298-8308 ◽  
Author(s):  
Vishal Ratanpaul ◽  
Dagong Zhang ◽  
Barbara A. Williams ◽  
Simon Diffey ◽  
John L. Black ◽  
...  

Undigested nutrients and fermentable fibre in the distal ileum and colon stimulate intestinal brakes, which reduce gastric-emptying and digesta-passage-rate, and subsequently limit feed/food-intake.

1999 ◽  
Vol 69 (1) ◽  
pp. 147-156 ◽  
Author(s):  
J. J. Hyslop ◽  
G. J. Stefansdottir ◽  
B. M. L. McLean ◽  
A. C. Longland ◽  
D. Cuddeford

AbstractThree experiments were conducted to investigate the effect of bag incubation sequence on the degradation of food components in situ in the caecum of mature, caecally fistulated Welsh-cross pony geldings (mean live weight 278 kg) offered hay ad libitum. In experiment 1 a fibre-based commercial horse concentrate was incubated in situ using a forward (3, 5, 16, 8, 24, 48 h) or reverse (48, 24, 8, 16, 5, 3 h) incubation sequence. Dry matter (DM), crude protein (CP), neutral-detergent fibre (NDF) and acid-detergent fibre (ADF) degradation coefficients and calculated effective degradability (ED) values were determined. In experiment 2 unmolassed sugar-beet pulp (USBP), hay cubes (HC), soya hulls (SH) and a 2: 1 mixture of oat hulls: naked oats (OHNO) were incubated in situ as for experiment 1. In experiment 3 unprocessed barley (UB), micronized barley (MB), extruded barley (EB) and dehydrated grass (DHG) were incubated in situ according to slightly different forward or reverse incubation sequences of (2, 4, 6, 12, 8, 24, 48 h) and (48, 24, 8, 4, 12, 6, 2 h) respectively. In experiments 2 and 3 only DM degradation parameters were studied.Of the three starch-based foods studied in experiment 3 (UB, MB and EB), incubation sequence did not significantly P > 0·05) affect any of the degradation parameters examined. Conversely however, of the six fibre-based foods which were examined across the three experiments, incubation sequence did significantly P < 0·05) affect in situ degradation parameters in the commercial horse concentrate in experiment 1, the SH food in experiment 2 and the DHG food in experiment 3. Depending on the food or food constituent studied (i.e. DM, CP, NDF or ADF) degradation coefficients a, b, c and a + b along with ED values calculated at fractional outflow rates of 0·05 and 0·025 could all be statistically different CP < 0·05) according to whether a forward or reverse incubation sequence was used. It is postulated that this effect is related to the basic digestive physiology of the equine caecum which is small, digesta passage rate through it is fast and digesta volumes can vary considerably. These factors may interact to create a considerable degree of non-uniformity within the caecal digesta pool in which in situ bags are incubated. Consequently, it is recommended that in future in situ experiments in the equine hindgut, animals are offered ad libitum diets in an attempt to minimize variation within the caecum. It is also recommended that in situ experimental protocols incorporate more than one incubation sequence when the degradation parameters of fibrous foods are studied in equids.


2017 ◽  
Vol 57 (12) ◽  
pp. 2436 ◽  
Author(s):  
V. Ratanpaul ◽  
D. Zhang ◽  
B. A. Williams ◽  
S. Diffey ◽  
J. L. Black ◽  
...  

1977 ◽  
Vol 28 (2) ◽  
pp. 333 ◽  
Author(s):  
TJ McClure

A group of 16 cows, each suckling one calf, were fed on rations composed of maize meal, cottonseed meal, urea and rice straw in one of four different ratios and at two levels, (a) ad libitum and (b) in restricted amounts. The composition of the feed affected intake. Both the gross intake and the estimated intake of metabolizable energy were closely correlated with liveweight change. The intake of metabolizable energy was correlated with blood glucose in the cows fed ad libitum, but not in the cows fed on restricted amounts of the rations. It was concluded that feed quality significantly affected the blood glucose concentration of the lactating cows, but that within the ranges used in this experiment, feed intake and the intake of metabolizable energy had little effect.


2009 ◽  
Vol 148 (2) ◽  
pp. 233-242 ◽  
Author(s):  
W. CHANCHAI ◽  
S. CHANPONGSANG ◽  
N. CHAIYABUTR

SUMMARYThe aim of the current study was to determine how cooling and supplemental recombinant bovine somatotropin (rbST) affect body function with respect to digestion kinetics, digestibility and other variables relevant to milk production in cross-bred Holstein cattle. Ten primiparous cross-bred dairy cattle (0·875 Holstein Friesian×0·125 Red Shindi) were used and divided into two groups of five animals each that were housed in a normal shaded barn (NS barn; non-cooled cows) and in a shaded barn with mist-fan cooling (MF; cooled cows). The cows in each group were supplemented with rbST in early, mid and late stages of lactation with three consecutive subcutaneous injections of 500 mg rbST every 14 days. All cows were fed the same total mixed ration twice daily at approximately 1·1 of assumed ad libitum intake and water was offered ad libitum. During the experimental periods, values of ambient temperatures and temperature humidity index (THI) in the NS barn were significantly higher than in the MF barn, whereas the relative humidity in the MF barn was significantly higher than in the NS barn (P<0·01). The respiration rate and rectal temperature were significantly higher for non-cooled cows than for cooled cows during the daytime whether there was or was not rbST supplementation. Supplementation of rbST for either cooled or non-cooled cows significantly increased dry matter intake (DMI), the efficiency of feed utilization and milk yields (P<0·05). Digesta kinetics using chromic oxide as an external marker showed a high digesta passage rate constant and low mean retention time of digesta in cows either by cooling or supplementation of rbST, whereas no changes were seen for the digestibility of dry matter (DM), organic matter (OM), crude protein (CP), neutral detergent fibre (NDF) and acid detergent fibre (ADF). The half-time of Cr2O3 in the whole digestive tract of cooled cows was lower than those of non-cooled cows and significantly decreased (P<0·05) during rbST supplementation in both groups in all stages of lactation. The magnitude of responses for the digesta passage rate and efficiency of feed utilization were larger in animals supplemented with rbST than in animals under MF cooling only.The main effect of cooling and supplemental rbST was to improve digestion by an increase in the rate of passage of digesta and in turn an increase in feed intake. Digestibility was not influenced by changes in passage rate of digesta either by cooling or rbST supplementation. Milk production in response to rbST supplementation is probably enhanced with cooling. The increased milk production induced by rbST supplementation was mediated by increased efficiency of feed utilization without changes in diet digestibility.


2015 ◽  
Vol 66 (2-3) ◽  
pp. 93-103 ◽  
Author(s):  
Allan Geliebter ◽  
Charlotte L. Grillot ◽  
Roni Aviram-Friedman ◽  
Sakeena Haq ◽  
Eric Yahav ◽  
...  

Objective: The extent to which different types of breakfasts affect appetite and food intake is unclear. To assess the satiety effects of a high-fiber cereal, we compared oatmeal, isocaloric corn flakes, and water. Subjects/Methods: Thirty-six subjects (18 lean, 18 overweight) were assigned to three conditions in a randomized sequence on different days. Ratings of hunger and fullness were obtained concurrently with blood samples for measuring concentrations of glucose, insulin, glucagon, leptin, and acetaminophen (gastric emptying tracer). Appetite was assessed by calculating the area under the curve (AUC) for fullness and hunger, and by measuring food intake of an ad libitum lunch meal at 180 min. Results: Lunch meal intake was lowest after consuming oatmeal (p < 0.00001), which was lower for overweight subjects than lean subjects (p = 0.007). Fullness AUC was greatest (p = 0.00001), and hunger AUC lowest (p < 0.001) after consuming oatmeal. At 180 min, blood glucose was lowest after the corn flakes (p = 0.0001). Insulin AUC was greater for both cereals than water (p < 0.00001). Leptin AUC and glucagon AUC values did not differ between conditions. Acetaminophen concentrations peaked latest after consuming oatmeal (p = 0.046), reflecting slower gastric emptying. Conclusions: Satiety was greater and ad libitum test meal intake lower after consuming oatmeal than after corn flakes, especially in the overweight subjects.


1995 ◽  
Vol 43 (2) ◽  
pp. 119 ◽  
Author(s):  
JM Lanyon ◽  
H Marsh

The retention times of particulate digesta were measured in two captive dugongs, Dugong dugon (Muller 1776) using inert plastic markers. The mouth-to-anus retention times (146-166 h) were similar to those of the West Indian manatee, and much longer than those of most other herbivorous mammals. This slow gut passage rate may be explained by the dugong's long digestive tract, the low fibre level of the diet and the low food intake. Like the manatee, the dugong appears to have a digestive strategy that is atypical of hindgut fermenters: low-fibre material is retained for extended periods within the long hindgut and almost completely digested.


2013 ◽  
Vol 304 (12) ◽  
pp. G1117-G1127 ◽  
Author(s):  
Astrid Plamboeck ◽  
Simon Veedfald ◽  
Carolyn F. Deacon ◽  
Bolette Hartmann ◽  
André Wettergren ◽  
...  

Rapid degradation of glucagon-like peptide-1 (GLP-1) by dipeptidyl peptidase-4 suggests that endogenous GLP-1 may act locally before being degraded. Signaling via the vagus nerve was investigated in 20 truncally vagotomized subjects with pyloroplasty and 10 matched healthy controls. Subjects received GLP-1 (7-36 amide) or saline infusions during and after a standardized liquid mixed meal and a subsequent ad libitum meal. Despite no effect on appetite sensations, GLP-1 significantly reduced ad libitum food intake in the control group but had no effect in the vagotomized group. Gastric emptying was accelerated in vagotomized subjects and was decreased by GLP-1 in controls but not in vagotomized subjects. Postprandial glucose levels were reduced by the same percentage by GLP-1 in both groups. Peak postprandial GLP-1 levels were approximately fivefold higher in the vagotomized subjects. Insulin secretion was unaffected by exogenous GLP-1 in vagotomized subjects but was suppressed in controls. GLP-1 significantly reduced glucagon secretion in both groups, but levels were approximately twofold higher and were nonsuppressible in the early phase of the meal in vagotomized subjects. Our results demonstrate that vagotomy with pyloroplasty impairs the effects of exogenous GLP-1 on food intake, gastric emptying, and insulin and glucagon secretion, suggesting that intact vagal innervation may be important for GLP-1's actions.


1998 ◽  
Vol 275 (1) ◽  
pp. R174-R179 ◽  
Author(s):  
Mark C. Flynn ◽  
Thomas R. Scott ◽  
Thomas C. Pritchard ◽  
Carlos R. Plata-Salamán

OB protein (leptin) decreases food intake in a variety of species. Here we investigated the effects of the intracerebroventricular administration of recombinant murine OB protein on food consumption and meal parameters in Wistar rats maintained ad libitum. The intracerebroventricular administration of OB protein (0.56–3.5 μg/rat) decreased feeding in a dose-dependent manner. Computer analysis of meal parameters demonstrated that OB protein (3.5 μg/rat, n = 10) decreased nighttime meal size by 42%, whereas meal frequency and meal duration were unaffected. Derived analyses for the nighttime also showed that OB protein decreased the feeding rate (meal size/meal duration) by 30%, whereas the satiety ratio (intermeal intervals/meal size) increased by 100%. A similar profile was observed during the daytime and total daily periods. The intracerebroventricular administration of heat-inactivated OB protein (3.5 μg/rat, n = 10) had no effect on any meal parameter. The results show that OB protein administered intracerebroventricularly inhibits feeding through a specific reduction of meal size.


2019 ◽  
Vol 121 (5) ◽  
pp. 529-537 ◽  
Author(s):  
Marijke Schop ◽  
Alfons J. M. Jansman ◽  
Sonja de Vries ◽  
Walter J. J. Gerrits

AbstractThe passage rate of solids and liquids through the gastrointestinal tract differs. Increased dietary nutrient solubility causes nutrients to shift from the solid to the liquid digesta fraction and potentially affect digesta passage kinetics. We quantified: (1) the effect of three levels of dietary nutrient solubility (8, 19 and 31 % of soluble protein and sucrose in the diet) at high feed intake level (S) and (2) the effect of lowv.high feed intake level (F), on digesta passage kinetics in forty male growing pigs. The mean retention time (MRT) of solids and liquids in the stomach and small intestine was assessed using TiO2and Cr-EDTA, respectively. In addition, physicochemical properties of digesta were evaluated. Overall, solids were retained longer than liquids in the stomach (2·0 h,P<0·0001) and stomach+small intestine (1·6 h,P<0·001). When S increased, MRT in stomach decreased by 1·3 h for solids (P=0·01) and 0·7 h for liquids (P=0·002) but only at the highest level of S. When F increased using low-soluble nutrients, MRT in stomach increased by 0·8 h for solids (P=0·041) and 0·7 h for liquids (P=0·0001). Dietary treatments did not affect water-binding capacity and viscosity of digesta. In the stomach of growing pigs, dietary nutrient solubility affects digesta MRT in a non-linear manner, while feed intake level increases digesta MRT depending on dietary nutrient solubility. Results can be used to improve predictions on the kinetics of nutrient passage and thereby of nutrient digestion and absorption in the gastrointestinal tract.


Sign in / Sign up

Export Citation Format

Share Document