A high-throughput liquid biopsy for rapid rare cell separation from large-volume samples

Lab on a Chip ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 68-78 ◽  
Author(s):  
Yaoping Liu ◽  
Tingyu Li ◽  
Mingxin Xu ◽  
Wei Zhang ◽  
Yan Xiong ◽  
...  

The developed high-throughput liquid biopsy platform for rare tumor cell separation from body fluids has shown enormous promise in cancer detection and prognosis monitoring.

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Kaifeng Zhao ◽  
Yaoping Liu ◽  
Hua Wang ◽  
Yanling Song ◽  
Xiao-Feng Chen ◽  
...  

Rapid, efficient, and selective separation of tumor cells from complex body fluids is urgently needed for clinical application of tumor-cell-based liquid biopsy. Herein, a size-selective affinity filtration system, named Selective,...


2018 ◽  
Vol 36 (15_suppl) ◽  
pp. e24224-e24224
Author(s):  
Yaoping Liu ◽  
Tingyu Li ◽  
Wei Zhang ◽  
Lianjun Lin ◽  
Xiaolong Rao ◽  
...  

2021 ◽  
Author(s):  
Yanling Cai ◽  
Di Wu

Extracellular vesicles (EVs) are heterogeneous due to their cell of origins, biogenesis, stimuli in the microenvironment and so on. Single EV analysis is required for the study of EV heterogeneity. Besides the investigation of EV biology, single EV analysis technologies are promising approach for liquid biopsy, which relies on the detection of biomarker EVs readily available in body fluids but in trace amount. However, EVs are nano-scaled structures, which beyond the resolution of conventional technologies like optical microscopes, flow cytometers and so on. In this chapter, we will discuss advanced strategies for studying single EVs, including single EV imaging systems, flow cytometers, nano-sensing technologies and single EV barcoding assay.


Author(s):  
Jiashu Sun

We report on the development of a curved microfluidic channel that allows rapid and continuous size-based rare tumor cell separation from blood in a label-free manner by exploiting the hydrodynamic effects. The separated tumor cells are trapped and enriched on an integrated polycarbonate filter glued on top of the outlet reservoir of microchannels. CK19 mRNA of MCF-7 cells are detected by loop-mediated isothermal amplification (LAMP).


2013 ◽  
Vol 7 (1) ◽  
pp. 011802 ◽  
Author(s):  
Jiashu Sun ◽  
Chao Liu ◽  
Mengmeng Li ◽  
Jidong Wang ◽  
Yunlei Xianyu ◽  
...  

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Di Huang ◽  
Nan Xiang

A three-stage i-Mag device combines the passive inertial microfluidics and the active magnetophoresis method for rapid, precise, and tumor antigen-independent separation of rare tumor cells from blood.


Author(s):  
Suman Kumar Ray ◽  
Sukhes Mukherjee

: Cell-free DNA (cfDNA) is present in numerous body fluids in addition to initiates generally from blood cells. It is undoubtedly the utmost promising tool among all components of liquid biopsy. Liquid biopsy is a specialized method investigating the nonsolid biological tissue by revealing of circulating cells, cell free DNA etc. that enter body fluids. Since, cancer cells disengage from compact tumors circulate in peripheral blood, evaluating blood of cancer patients holds the opportunities for capture and molecular level analysis of various tumor-derived constituents. Cell free DNA samples can deliver a significant perceptions into oncology, for instance tumor heterogeneity, instantaneous tumor development, response to therapy and treatment, comprising immunotherapy and mechanisms of cancer metastasis. Malignant growth at any phase can outhouse tumor cells in addition to fragments of neoplasticity causing DNA into circulatory system giving noble sign of mutation in the tumor at sampling time. Liquid biopsy distinguishes diverse blood based evolving biomarkers comprising circulating tumor cells (CTCs), circulating tumor DNA (ctDNA) or cfDNA, circulating RNA (cfRNA) and exosomes. Cell free DNA are little DNA fragments found circulating in plasma or serum, just as other fluids present in our body. Cell free DNA involves primarily double stranded nuclear DNA and mitochondrial DNA, present both on a surface level and in the lumen of vesicles. The probable origins of the tumor-inferred portion of cfDNA are apoptosis or tumor necrosis, lysis of CTCs or release of DNA from the tumor cells into circulation. The evolution of innovations, refinement and improvement in therapeutics for determination of cfDNA fragment size and its distribution provide significant information related with pathological conditions of the cell, thus emerging as promising indicator for clinical output in medical biotechnology.


Sign in / Sign up

Export Citation Format

Share Document