scholarly journals High-Throughput Single Extracellular Vesicle Profiling

2021 ◽  
Author(s):  
Yanling Cai ◽  
Di Wu

Extracellular vesicles (EVs) are heterogeneous due to their cell of origins, biogenesis, stimuli in the microenvironment and so on. Single EV analysis is required for the study of EV heterogeneity. Besides the investigation of EV biology, single EV analysis technologies are promising approach for liquid biopsy, which relies on the detection of biomarker EVs readily available in body fluids but in trace amount. However, EVs are nano-scaled structures, which beyond the resolution of conventional technologies like optical microscopes, flow cytometers and so on. In this chapter, we will discuss advanced strategies for studying single EVs, including single EV imaging systems, flow cytometers, nano-sensing technologies and single EV barcoding assay.

Author(s):  
Dan Li ◽  
Wenjia Lai ◽  
Di Fan ◽  
Qiaojun Fang

Breast cancer is the most common malignant disease in women worldwide. Early diagnosis and treatment can greatly improve the management of breast cancer. Liquid biopsies are becoming convenient detection methods for diagnosing and monitoring breast cancer due to their non-invasiveness and ability to provide real-time feedback. A range of liquid biopsy markers, including circulating tumor proteins, circulating tumor cells, and circulating tumor nucleic acids, have been implemented for breast cancer diagnosis and prognosis, with each having its own advantages and limitations. Circulating extracellular vesicles are messengers of intercellular communication that are packed with information from mother cells and are found in a wide variety of bodily fluids; thus, they are emerging as ideal candidates for liquid biopsy biomarkers. In this review, we summarize extracellular vesicle protein markers that can be potentially used for the early diagnosis and prognosis of breast cancer or determining its specific subtypes.


2020 ◽  
Author(s):  
T.A. Hartjes ◽  
J.A. Slotman ◽  
M.S. Vredenbregt ◽  
N. Dits ◽  
R. Van der Meel ◽  
...  

AbstractExtracellular vesicles (EVs) reflect the cell of origin in terms of nucleic acids and protein content. They are found in biofluids and represent an ideal liquid biopsy biomarker source for many diseases. Unfortunately, clinical implementation is limited by available technologies for EV analysis. We have developed a simple, robust and sensitive microscopy-based high-throughput assay (EVQuant) to overcome these limitations and allow widespread use in the EV community. The EVQuant assay can detect individual immobilized EVs as small as 35 nm and determine their concentration in biofluids without extensive EV isolation or purification procedures. It can also identify specific EV subpopulations based on combinations of biomarkers and is used here to identify prostate-derived urinary EVs as CD9-/CD63+. Moreover, characterization of individual EVs allows analysis of their size distribution. The ability to identify, quantify and characterize EV (sub-)populations in high-throughput substantially extents the applicability of the EVQuant assay over most current EV quantification assays.


Lab on a Chip ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 68-78 ◽  
Author(s):  
Yaoping Liu ◽  
Tingyu Li ◽  
Mingxin Xu ◽  
Wei Zhang ◽  
Yan Xiong ◽  
...  

The developed high-throughput liquid biopsy platform for rare tumor cell separation from body fluids has shown enormous promise in cancer detection and prognosis monitoring.


2018 ◽  
Vol 36 (15_suppl) ◽  
pp. e24224-e24224
Author(s):  
Yaoping Liu ◽  
Tingyu Li ◽  
Wei Zhang ◽  
Lianjun Lin ◽  
Xiaolong Rao ◽  
...  

2020 ◽  
Vol 2 (1) ◽  
pp. 42-47
Author(s):  
Stefanie Hermann ◽  
Christian Grätz ◽  
Benedikt Kirchner ◽  
Michael W. Pfaffl

Liquid biopsy-derived extracellular vesicles (EVs) are an auspicious source for transcriptomic biomarker studies. Here, we review the potential of EV microRNAs (miRNAs) biomarkers, exemplary outline commonly used methods to elucidate new biomarker signatures, and pivotally discuss their applicability at present. Keywords: extracellular vesicles, liquid biopsies, transcriptomic biomarkers, microRNAs


2020 ◽  
Author(s):  
Joshua A. Welsh ◽  
Bryce Killingsworth ◽  
Julia Kepley ◽  
Tim Traynor ◽  
Kathy McKinnon ◽  
...  

AbstractEvidence continues to increase of the clinical utility extracellular vesicles (EVs) can provide as translational biomarkers. While a wide variety of EV isolation and purification methods have been implemented, few techniques are high-throughput and scalable for removing excess fluorescent reagents (e.g. dyes, antibodies). EVs are too small to be recovered from routine cell-processing procedures, such as filtration or centrifugation. The lack of suitable methods for removing unbound labels, especially in optical assays, is a major roadblock to accurate EV phenotyping and utilization of EV assays in a translational or clinical setting. Therefore, we developed a method for using a multi-modal resin, referred to as EV-Clean, to remove unbound labels from EV samples, and we demonstrate improvement in flow cytometric EV analysis with the use of this EV-Clean method.


Nanoscale ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 3737-3745
Author(s):  
Joshua A. Welsh ◽  
Bryce Killingsworth ◽  
Julia Kepley ◽  
Tim Traynor ◽  
Kathy McKinnon ◽  
...  

Proposed pipeline to increase of the clinical utility extracellular vesicles (EVs) as translational biomarkers.


Author(s):  
Suman Kumar Ray ◽  
Sukhes Mukherjee

: Cell-free DNA (cfDNA) is present in numerous body fluids in addition to initiates generally from blood cells. It is undoubtedly the utmost promising tool among all components of liquid biopsy. Liquid biopsy is a specialized method investigating the nonsolid biological tissue by revealing of circulating cells, cell free DNA etc. that enter body fluids. Since, cancer cells disengage from compact tumors circulate in peripheral blood, evaluating blood of cancer patients holds the opportunities for capture and molecular level analysis of various tumor-derived constituents. Cell free DNA samples can deliver a significant perceptions into oncology, for instance tumor heterogeneity, instantaneous tumor development, response to therapy and treatment, comprising immunotherapy and mechanisms of cancer metastasis. Malignant growth at any phase can outhouse tumor cells in addition to fragments of neoplasticity causing DNA into circulatory system giving noble sign of mutation in the tumor at sampling time. Liquid biopsy distinguishes diverse blood based evolving biomarkers comprising circulating tumor cells (CTCs), circulating tumor DNA (ctDNA) or cfDNA, circulating RNA (cfRNA) and exosomes. Cell free DNA are little DNA fragments found circulating in plasma or serum, just as other fluids present in our body. Cell free DNA involves primarily double stranded nuclear DNA and mitochondrial DNA, present both on a surface level and in the lumen of vesicles. The probable origins of the tumor-inferred portion of cfDNA are apoptosis or tumor necrosis, lysis of CTCs or release of DNA from the tumor cells into circulation. The evolution of innovations, refinement and improvement in therapeutics for determination of cfDNA fragment size and its distribution provide significant information related with pathological conditions of the cell, thus emerging as promising indicator for clinical output in medical biotechnology.


2021 ◽  
Vol 10 (2) ◽  
pp. 319
Author(s):  
Hee Cheol Yang ◽  
Won Jong Rhee

Because cancers are heterogeneous, it is evident that multiplexed detection is required to achieve disease diagnosis with high accuracy and specificity. Extracellular vesicles (EVs) have been a subject of great interest as sources of novel biomarkers for cancer liquid biopsy. However, EVs are nano-sized particles that are difficult to handle; thus, it is necessary to develop a method that enables efficient and straightforward EV biomarker detection. In the present study, we developed a method for single step in situ detection of EV surface proteins and inner miRNAs simultaneously using a flow cytometer. CD63 antibody and molecular beacon-21 were investigated for multiplexed biomarker detection in normal and cancer EVs. A phospholipid-polymer-phospholipid conjugate was introduced to induce clustering of the EVs analyzed using nanoparticle tracking analysis, which enhanced the detection signals. As a result, the method could detect and distinguish cancer cell-derived EVs using a flow cytometer. Thus, single step in situ detection of multiple EV biomarkers using a flow cytometer can be applied as a simple, labor- and time-saving, non-invasive liquid biopsy for the diagnosis of various diseases, including cancer.


2021 ◽  
Author(s):  
Shuwei Wang ◽  
Jiajia Wang ◽  
Tuoyu Ju ◽  
Kaige Qu ◽  
Fan Yang ◽  
...  

Extracellular Vesicles (EVs) secreted by cancer cells have a key role in the cancer microenvironment and progression. Previous studies have mainly focused on molecular functions, cellular components and biological processes...


Sign in / Sign up

Export Citation Format

Share Document