Water-soluble copper(i) complexes bearing 2,2′-bicinchoninic acid dipotassium salt with red-light absorption and repeatable colour change upon freezing operation

2019 ◽  
Vol 43 (1) ◽  
pp. 277-283
Author(s):  
Yuma Saito ◽  
Michihiro Nishikawa ◽  
Taro Tsubomura

The repeatable colour change upon freezing–melting operation of a water solution of a Cu(i) complex is found. Efficient red light absorption is also one of the advantages of this complex.

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1316
Author(s):  
Vanessa Miglio ◽  
Chiara Zaccone ◽  
Chiara Vittoni ◽  
Ilaria Braschi ◽  
Enrico Buscaroli ◽  
...  

This study focused on the application of mesoporous silica monoliths for the removal of organic pollutants. The physico-chemical textural and surface properties of the monoliths were investigated. The homogeneity of the textural properties along the entire length of the monoliths was assessed, as well as the reproducibility of the synthesis method. The adsorption properties of the monoliths for gaseous toluene, as a model of Volatile Organic Compounds (VOCs), were evaluated and compared to those of a reference meso-structured silica powder (MCM-41) of commercial origin. Silica monoliths adsorbed comparable amounts of toluene with respect to MCM-41, with better performances at low pressure. Finally, considering their potential application in water phase, the adsorption properties of monoliths toward Rhodamine B, selected as a model molecule of water soluble pollutants, were studied together with their stability in water. After 24 h of contact, the silica monoliths were able to adsorb up to the 70% of 1.5 × 10−2 mM Rhodamine B in water solution.


2016 ◽  
Vol 871 ◽  
pp. 96-103 ◽  
Author(s):  
Vladimir Erofeev ◽  
Aleksandr Bobryshev ◽  
Aleksandr Lakhno ◽  
Lenar Shafigullin ◽  
Ilnaz Khalilov ◽  
...  

Presents the results of studies of contemporary materials in the field of rheological state. The topological mortar structure has been provided by theoretical evaluation of the rheological state of the cross-linked solutions and the experimental viscosity data of the sand cement mortar which has been modified by water-soluble additive – polyoxyethylene. The general model has been made for the structure of non-Newtonian liquideous systems including dilatant, pseudoplastic bodies with two main rheological active components in their structure – rigid and viscous phases. It is shown that in pseudoplastic systems, as the shear stress increases, the viscous phase grows because of the reduction of rigid phase content. In dilatant systems the converse situation has been observed. Furthermore, these phases are not clearly distinguishable, but to the contrary they are spatially interconnected in a complex way. The structure modeling has been made for non-Newtonian bodies using the Shklovskii-de Gennes model. The studies have found that the construction composite sand cement system is defined as the pseudoplastic body where cement and sand act as the rigid phase, water solution of polyoxyethylene – as the viscous phase. These findings can be used to prove the influence of polymer powder on the workability of dry mortar.


2018 ◽  
Vol 96 (4) ◽  
pp. 363-370 ◽  
Author(s):  
You-Ming Zhang ◽  
Xiao-Peng Chen ◽  
Guo-Yan Liang ◽  
Kai-Peng Zhong ◽  
Hong Yao ◽  
...  

The selective recognition of target ions in water is very important and the development of novel water-soluble chemosensor is still an intriguing challenge. Herein, a novel water-soluble fluorescent sensor based on aspartic acid (Asp) functionalized 1,8-naphthalimide derivative (Asp-NI) has been designed and synthesized. The sensor Asp-NI could dissolve in water and successively detect Fe3+ and H2PO4− in water solution with high selectivity and sensitivity. The detection limits are 4.97 × 10−7 mol/L for Fe3+ and 5.27 × 10−6 mol/L for H2PO4−. Other coexistent competitive metal ions (Hg2+, Ag+, Ca2+, Cu2+, Co2+, Ni2+, Cd2+, Pb2+, Zn2+, Cr3+, and Mg2+) showed no interference in the Fe3+ detection process. The sensor Asp-NI could act as a Fe3+ and H2PO4− controlled “On–Off–On” fluorescent switch. More interestingly, the Fe3+ induced fluorescence quenching process could be totally reversed by the addition of H2PO4−, this “On–Off–On” switching process could be repeated several times with little fluorescence loss. Notably, the actual usage of sensor Asp-NI was further demonstrated by test kits.


Author(s):  
Emine Ece Mercan ◽  
Mehtap Şahin-Çevik

Abstract Anthocyanins are water-soluble pigments responsible for red, pink, purple or blue coloration in the flesh and/or skin of apple fruit. Since consumers prefer anthocyanin rich fruits due to their health benefits, anthocyanin content is an important trait for marketability of apples. Synthesis and accumulation of anthocyanins are controlled by environmental and genetic factors such as transcription factors (TFs). Two-repeat (R2R3) MYB TFs are involved in the regulation of anthocyanin biosynthesis in plants. In this study, the expression of the MdMYBA and MdMYB3 genes encoding R2R3 type MYB TFs were analyzed in apple cultivars with fruit skin color from green to dark red at different growth stages. Fruit samples were collected from “Scarlet Spur”, “Galaxy Gala”, Golden Delicious” “Granny Smith” apple cultivars with dark red, light red, yellow and green fruits, respectively, at four different time periods after full-bloom. Total RNA was isolated from the peel of the collected fruits and the expression of the MdMYBA and MdMYB3 genes was analyzed by real-time RT-PCR. The expression of the MdMYBA gene started to increase at 92 DAFB and thereafter in red-skin apples; however, no expression was observed at any time points in yellow or green-skin apple cultivars. On the other hand, the MdMYB3 gene was expressed in red-skin and yellow-skin apple cultivars starting at 55 DAFB, but no expression was observed in green apple cultivar at any time of fruit maturation. The expression levels of the MdMYBA and MdMYB3 genes varied in apple fruits with different skin coloration indicating that they play a role regulation of the anthocyanin biosynthesis in apple cultivars during fruit maturation.


1976 ◽  
Vol 59 (5) ◽  
pp. 1051-1058 ◽  
Author(s):  
Bozidar Stavrić ◽  
Raymond Klassen ◽  
W Arnold

Abstract Thirteen saccharin samples used for carcinogenicity tests in animals in various laboratories were analyzed for their chemical purity. Although most of the impurities were water-soluble, some were mainly soluble in organic solvents. These impurities were extracted with chloroform-methanol from a water solution of sodium saccharin. Samples obtained as acid-saccharin were converted to the sodium form before extraction. The major impurity in commercial saccharin, o-toluenesulfonamide, was also soluble in this system. Impurities were separated by gas-liquid chromatography of the underivatized, concentrated extract. Eleven major, well separated peaks were collected from the gas chromatographic column and identified by mass spectroscopy. Some of the peaks were compared with known standards. Qualitative and quantitative differences in impurities were observed among different saccharin samples. The identified impurities (in order of appearance from the gas-liquid chromatographic column) were as follows: o-toluenesulfonamide; p-toluenesufonamide; 1,2-benzisothiazole 1,1-dioxide; 1,2-benzisothiazoline 1,1-dioxide; diphenylsulfone; o,o′-ditolylsulfone; o,m′-ditolylsulfone, o,p′-ditolylsulfone; m,p′-ditolylsulfone; p,p′-ditolylsulfone, and tetracosane.


2019 ◽  
Vol 43 (2) ◽  
pp. 900-906 ◽  
Author(s):  
Aniruddha Kundu ◽  
Byeongho Park ◽  
Chaiti Ray ◽  
Juyeong Oh ◽  
Seong Chan Jun

A green approach to synthesize red emissive gold nanoclusters for nano-molar detection of mercuric ions.


2018 ◽  
Author(s):  
Deep Sengupta ◽  
Vera Samburova ◽  
Chiranjivi Bhattarai ◽  
Elena Kirillova ◽  
Lynn Mazzoleni ◽  
...  

Abstract. Fresh and atmospherically aged biomass-burning (BB) aerosol mass is mostly comprised of black carbon (BC) and organic carbon (OC) with its light-absorbing fraction – brown carbon (BrC). There is a lack of data on the physical and chemical properties of atmospheric BB aerosols, leading to high uncertainties in estimates of the BB impact on air quality and climate, especially for BrC. The polarity of chemical compounds influences their fate in the atmosphere including wet/dry deposition and chemical and physical processing. So far, most of the attention has been given to the water-soluble (polar) fraction of BrC, while the non-polar BrC fraction has been largely ignored. In the present study, the light absorption properties of polar and non-polar fractions of fresh and aged BB emissions were examined to estimate the contribution of different-polarity organic compounds to the light absorption properties of BB aerosols. In our experiments, four globally and regionally important fuels were burned under flaming and smoldering conditions in DRI’s combustion chamber. To mimic atmospheric oxidation processes (5–7 days), BB emissions were aged using an oxidation flow reactor (OFR). Fresh and OFR-aged BB aerosols were collected on filters and extracted with water and hexane to study absorption properties of polar and non-polar organic species. Spectrophotometric measurements over the 190 to 900 nm wavelength range showed that the non-polar (hexane-soluble) fraction is 2–3 times more absorbing than the polar (water-soluble) fraction. However, an increased absorbance was observed for the water extracts of oxidized/aged emissions while the absorption of the hexane extracts was lower for the aged emissions. Comparing the absorption Ångström Exponent (AAE) values, we observed changes in the light absorption properties of BB aerosols with aging that was dependent on the fuel types. The light absorption by HUmic LIke Substances (HULIS) was found to be higher in fuels characteristic of the southwestern USA. The absorption of the HULIS fraction was lower for OFR-aged BB emissions. Comparison of the light absorption properties of different polarity extracts (water, hexane, HULIS) provides insight into the chemical nature of BB BrC and its transformation during oxidation processes.


2020 ◽  
Vol 261 ◽  
pp. 114239 ◽  
Author(s):  
Pengfei Chen ◽  
Shichang Kang ◽  
Lekhendra Tripathee ◽  
Kirpa Ram ◽  
Maheswar Rupakheti ◽  
...  

2018 ◽  
Vol 115 (30) ◽  
pp. 7717-7722 ◽  
Author(s):  
Meng Li ◽  
Fengxia Bao ◽  
Yue Zhang ◽  
Wenjing Song ◽  
Chuncheng Chen ◽  
...  

Soot, which consists of organic carbon (OC) and elemental carbon (EC), is a significant component of the total aerosol mass in the atmosphere. Photochemical oxidation is an important aging pathway for soot. It is commonly believed that OC is photoactive but EC, albeit its strong light absorption, is photochemically inert. Here, by taking advantage of the different light absorption properties of OC and EC, we provide direct experimental evidence that EC also plays an important role in the photochemical aging of soot by initiating the oxidation of OC, even under red light irradiation. We show that nascent soot, in addition to undergoing photochemical oxidation under blue light with a wavelength of 440 nm, undergoes similar oxidation under red light irradiation of λ = 648 nm (L648). However, separated OC (extracted from soot by n-hexane) and EC exhibit little reactivity under L648. These observations indicate that EC plays a pivotal role in photoaging of soot by adsorbing light to initiate the oxidation of OC. Comparison of in situ IR spectra and photoelectrochemical behaviors suggests that EC-initiated photooxidation of OC proceeds through an electron transfer pathway, which is distinct from the photoaging induced by light absorption of OC. Since the absorption spectra of EC have a much larger overlap with the solar spectra than those of OC, our results provide insight into the chemical mechanism leading to rapid soot aging by organic species observed from atmospheric field measurements.


Sign in / Sign up

Export Citation Format

Share Document