Polydopamine modification of silk fibroin membranes significantly promotes their wound healing effect

2019 ◽  
Vol 7 (12) ◽  
pp. 5232-5237 ◽  
Author(s):  
Ying Zhang ◽  
Leihao Lu ◽  
Yuping Chen ◽  
Jie Wang ◽  
Yuyin Chen ◽  
...  

Natural polymer-based wound dressings have gained great attention in skin tissue engineering.

Author(s):  
Lucie Bacakova ◽  
Julia Pajorova ◽  
Marketa Bacakova ◽  
Anne Skogberg ◽  
Pasi Kallio ◽  
...  

Nanocellulose is cellulose in the form of nanostructures, i.e. features not exceeding 100 nm at least in one dimension. These nanostructures include nanofibrils, e.g. in bacterial cellulose; nanofibers, e.g. in electrospun matrices; nanowhiskers and nanocrystals. These structures can be further assembled into bigger 2D and 3D nano-, micro- and macro-structures, such as nanoplatelets, membranes, films, microparticles and porous macroscopic matrices. There are four main sources of nanocellulose: bacteria (Gluonacetobacter), plants (trees, shrubs, herbs), algae (Cladophora) and animals (Tunicata). Nanocellulose has emerged for a wide range of industrial, technology and biomedical applications, e.g. for adsorption, ultrafiltration, packaging, conservation of historical artifacts, thermal insulation and fire retardation, energy extraction and storage, acoustics, sensorics, controlled drug delivery, and particularly for tissue engineering. Nanocellulose is promising for use in scaffolds for engineering of blood vessels, neural tissue, bone, cartilage, liver, adipose tissue, urethra and dura mater, for repairing connective tissue and congenital heart defects, and for constructing contact lenses and protective barriers. This review is focused on applications of nanocellulose in skin tissue engineering and wound healing as a scaffold for cell growth, for delivering cells into wounds, and as a material for advanced wound dressings coupled with drug delivery, transparency and sensorics. Potential cytotoxicity and immunogenicity of nanocellulose are also discussed.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 164 ◽  
Author(s):  
Lucie Bacakova ◽  
Julia Pajorova ◽  
Marketa Bacakova ◽  
Anne Skogberg ◽  
Pasi Kallio ◽  
...  

Nanocellulose is cellulose in the form of nanostructures, i.e., features not exceeding 100 nm at least in one dimension. These nanostructures include nanofibrils, found in bacterial cellulose; nanofibers, present particularly in electrospun matrices; and nanowhiskers, nanocrystals, nanorods, and nanoballs. These structures can be further assembled into bigger two-dimensional (2D) and three-dimensional (3D) nano-, micro-, and macro-structures, such as nanoplatelets, membranes, films, microparticles, and porous macroscopic matrices. There are four main sources of nanocellulose: bacteria (Gluconacetobacter), plants (trees, shrubs, herbs), algae (Cladophora), and animals (Tunicata). Nanocellulose has emerged for a wide range of industrial, technology, and biomedical applications, namely for adsorption, ultrafiltration, packaging, conservation of historical artifacts, thermal insulation and fire retardation, energy extraction and storage, acoustics, sensorics, controlled drug delivery, and particularly for tissue engineering. Nanocellulose is promising for use in scaffolds for engineering of blood vessels, neural tissue, bone, cartilage, liver, adipose tissue, urethra and dura mater, for repairing connective tissue and congenital heart defects, and for constructing contact lenses and protective barriers. This review is focused on applications of nanocellulose in skin tissue engineering and wound healing as a scaffold for cell growth, for delivering cells into wounds, and as a material for advanced wound dressings coupled with drug delivery, transparency and sensorics. Potential cytotoxicity and immunogenicity of nanocellulose are also discussed.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Azar Nourian Dehkordi ◽  
Fatemeh Mirahmadi Babaheydari ◽  
Mohammad Chehelgerdi ◽  
Shiva Raeisi Dehkordi

2015 ◽  
Vol 7 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Nandana Bhardwaj ◽  
Wan Ting Sow ◽  
Dipali Devi ◽  
Kee Woei Ng ◽  
Biman B. Mandal ◽  
...  

Development of highly vascular dermal tissue-engineered skin substitutes with appropriate mechanical properties and cellular cues is in need for significant advancement in the field of dermal reconstruction.


2020 ◽  
Vol 52 (10) ◽  
pp. 1102-1110
Author(s):  
Zhaodong Wang ◽  
Guangliang Zhang ◽  
Yingying Le ◽  
Jihui Ju ◽  
Ping Zhang ◽  
...  

Abstract Skin epidermal stem cells (EpSCs) play an important role in wound healing. Quercetin is a phytoestrogen reported to accelerate skin wound healing, but its effect on EpSCs is unknown. In this study, we investigated the effect of quercetin on human EpSC proliferation and explored the underlying mechanisms. We found that quercetin at 0.1~1 μM significantly promoted EpSC proliferation and increased the number of cells in S phase. The pro-proliferative effect of quercetin on EpSCs was confirmed in cultured human skin tissue. Mechanistic studies showed that quercetin significantly upregulated the expressions of β-catenin, c-Myc, and cyclins A2 and E1. Inhibitor for β-catenin or c-Myc significantly inhibited quercetin-induced EpSC proliferation. The β-catenin inhibitor XAV-939 suppressed quercetin-induced expressions of β-catenin, c-Myc, and cyclins A2 and E1. The c-Myc inhibitor 10058-F4 inhibited the upregulation of c-Myc and cyclin A2 by quercetin. Pretreatment of EpSCs with estrogen receptor (ER) antagonist ICI182780, but not the G protein-coupled ER1 antagonist G15, reversed quercetin-induced cell proliferation and upregulation of β-catenin, c-Myc, and cyclin A2. Collectively, these results indicate that quercetin promotes EpSC proliferation through ER-mediated activation of β-catenin/c-Myc/cyclinA2 signaling pathway and ER-independent upregulation of cyclin E1 and that quercetin may accelerate skin wound healing through promoting EpSC proliferation. As EpSCs are used not only in clinic to treat skin wounds but also as seed cells in skin tissue engineering, quercetin is a useful reagent to expand EpSCs for basic research, skin wound treatment, and skin tissue engineering.


2014 ◽  
Vol 55 (4) ◽  
pp. 907-916 ◽  
Author(s):  
Caihong Lei ◽  
Hailin Zhu ◽  
Jingjing Li ◽  
Jiuming Li ◽  
Xinxing Feng ◽  
...  

Author(s):  
Hyung Woo Ju ◽  
Ok Joo Lee ◽  
Jung Min Lee ◽  
Bo Mi Moon ◽  
Hyun Jung Park ◽  
...  

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 118
Author(s):  
Shima Tavakoli ◽  
Marta A. Kisiel ◽  
Thomas Biedermann ◽  
Agnes S. Klar

The immune system has a crucial role in skin wound healing and the application of specific cell-laden immunomodulating biomaterials emerged as a possible treatment option to drive skin tissue regeneration. Cell-laden tissue-engineered skin substitutes have the ability to activate immune pathways, even in the absence of other immune-stimulating signals. In particular, mesenchymal stem cells with their immunomodulatory properties can create a specific immune microenvironment to reduce inflammation, scarring, and support skin regeneration. This review presents an overview of current wound care techniques including skin tissue engineering and biomaterials as a novel and promising approach. We highlight the plasticity and different roles of immune cells, in particular macrophages during various stages of skin wound healing. These aspects are pivotal to promote the regeneration of nonhealing wounds such as ulcers in diabetic patients. We believe that a better understanding of the intrinsic immunomodulatory features of stem cells in implantable skin substitutes will lead to new translational opportunities. This, in turn, will improve skin tissue engineering and regenerative medicine applications.


Sign in / Sign up

Export Citation Format

Share Document