Degradation of ibuprofen and acetylsulfamethoxazole by multi-walled carbon nanotube catalytic ozonation: surface properties, kinetics and modeling

2019 ◽  
Vol 5 (10) ◽  
pp. 1758-1768 ◽  
Author(s):  
Mao-Shu Du ◽  
Kuan-Po Chen ◽  
Yi-Pin Lin

The role of carbon nanotubes in catalytic ozonation was characterized and the kinetics of PPCP degradation was successfully modelled.

2009 ◽  
Vol 1240 ◽  
Author(s):  
Ji-Ye Kang ◽  
Su-Mi Eo ◽  
Loon-Seng Tan ◽  
Jong-Beom Baek

AbstractSingle-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) were functionalized with 3,4-diaminobenzoic acid via “direct” Friedel-Crafts acylation reaction in PPA/P2O5 to afford ortho-diamino-functionalized SWCNT (DIF-SWCNT) and MWCNT (DIF-MWCNT). The resultant DIF-SWCNT and DIF-MWCNT showed improved solubility and dispersibility. To improve interfacial adhesion between CNT and polymer matrix, the grafting of ABPBI onto the surface of DIF-SWCNT (10 wt%) or DIF-MWCNT (10 wt%) was conducted by simple in-situ polymerization of AB monomer, 3,4-diaminobenzoic acid dihydrochloride, in PPA. The resultant ABPBI-g-MWCNT and ABPBI-g-SWCNT showed improved the mechanical and electrical properties.


2003 ◽  
Vol 791 ◽  
Author(s):  
P. C. Ramamurthy ◽  
W. R. Harrell ◽  
R. V. Gregory ◽  
B. Sadanadan ◽  
A. M. Rao

ABSTRACTHigh molecular weight polyaniline / multi-walled carbon nanotube composite films were fabricated using solution processing. Composite films with various weight percentages of multiwalled carbon nanotubes were fabricated. Physical properties of these composites were analyzed by thermogravimetric analysis, tensile testing, and scanning electron microscopy. These results indicate that the addition of multiwalled nanotubes to polyaniline significantly enhances the mechanical properties of the films. In addition, metal–semiconductor (composite) (MS) contact devices were fabricated, and it was observed that the current level in the films increased with increasing multiwalled nanotube content. Furthermore, it was observed that polyaniline containing one weight percent of carbon nanotubes appears to be the most promising composition for applications in organic electronic devices.


2018 ◽  
Vol 121 ◽  
pp. 65-71 ◽  
Author(s):  
Chunxue Zhao ◽  
Yiwei Zhou ◽  
Liangliang Liu ◽  
Jimin Long ◽  
Hongwen Liu ◽  
...  

2021 ◽  
Vol 06 ◽  
Author(s):  
Raja Murugesan ◽  
Sureshkumar Raman ◽  
Arun Radhakrishnan

Background: Recently, Nanomaterials based nano-composite materials play the role of various field. Especially, Carbon nanotube based materials are involved in the bio-medical applications.Since, their exclusive and exciting property, researchers worldwide have extensively involved in trans-modulating the carbon nanotubes into a viable medico-friendly system. Objective: These active researches paved the path towards targeted drug delivery, diagnostic techniques, and bio-analytical applications. Despite these exciting properties, which accomplish the probable for biomedical applications, they hold Biosafety issues. Methods: This broad-spectrum review has discussed different aspects of carbon nanotubes and carbon nanotube-based systems related to biomedical applications. Results: Adding to this, a short chronological description of these tiny yet powerful particles given, followed by a discussion regarding their types, properties, methods of synthesis, scale-up, purification techniques and characterization aspects of carbon nanotubes. Conclusion: In the later part, the functionalization of carbon nanotubes was reviewed in detail, which is important to make them biocompatible and stable in biological systems and render them a great property of loading various biomolecules diagnostic and therapeutic moieties. Lastly, an inclusive description of the potential biomedical applications has been given followed by insights into the future.


2019 ◽  
Vol 30 (8) ◽  
pp. 1216-1224 ◽  
Author(s):  
Mohammad Charara ◽  
Mohammad Abshirini ◽  
Mrinal C Saha ◽  
M Cengiz Altan ◽  
Yingtao Liu

This article presents three-dimensional printed and highly sensitive polydimethylsiloxane/multi-walled carbon nanotube sensors for compressive strain and pressure measurements. An electrically conductive polydimethylsiloxane/multi-walled carbon nanotube nanocomposite is developed to three-dimensional print compression sensors in a freestanding and layer-by-layer manner. The dispersion of multi-walled carbon nanotubes in polydimethylsiloxane allows the uncured nanocomposite to stand freely without any support throughout the printing process. The cross section of the compression sensors is examined under scanning electron microscope to identify the microstructure of nanocomposites, revealing good dispersion of multi-walled carbon nanotubes within the polydimethylsiloxane matrix. The sensor’s sensitivity was characterized under cyclic compression loading at various max strains, showing an especially high sensitivity at lower strains. The sensing capability of the three-dimensional printed nanocomposites shows minimum variation at various applied strain rates, indicating its versatile potential in a wide range of applications. Cyclic tests under compressive loading for over 8 h demonstrate that the long-term sensing performance is consistent. Finally, in situ micromechanical compressive tests under scanning electron microscope validated the sensor’s piezoresistive mechanism, showing the rearrangement, reorientation, and bending of the multi-walled carbon nanotubes under compressive loads, were the main reasons that lead to the piezoresistive sensing capabilities in the three-dimensional printed nanocomposites.


RSC Advances ◽  
2015 ◽  
Vol 5 (125) ◽  
pp. 103365-103372 ◽  
Author(s):  
Lei Liu ◽  
Dong Wang ◽  
Yuan Hu

Negative graphene oxide was combined with positive chitosan-modified multi-walled carbon nanotubes in aqueous solution and then thermally reduced to fabricate a multi-walled carbon nanotube/graphene (MWCNT/G) hybrid material.


Sign in / Sign up

Export Citation Format

Share Document