scholarly journals Multifunctional graphene oxide-bacteriophage based porous three-dimensional micro-nanocomposites

Nanoscale ◽  
2019 ◽  
Vol 11 (28) ◽  
pp. 13318-13329 ◽  
Author(s):  
Paolo Passaretti ◽  
Yiwei Sun ◽  
Inam Khan ◽  
Kieran Chan ◽  
Rania Sabo ◽  
...  

An alternative self-assembly strategy based on low-interactions for the fabrication of graphene-based sponges, using M13 bacteriophage as a cross-linking agent.

RSC Advances ◽  
2016 ◽  
Vol 6 (97) ◽  
pp. 94723-94730 ◽  
Author(s):  
Wei Ha ◽  
Jing Yu ◽  
Juan Chen ◽  
Yan-ping Shi

A three-dimensional self-assembly strategy for constructing graphene oxide hybrid supramolecular hydrogel with regular porous structure was developed.


Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 13 ◽  
Author(s):  
Bin Zhang ◽  
Jaehyun Lee ◽  
Mincheol Kim ◽  
Naeeung Lee ◽  
Hyungdong Lee ◽  
...  

The macroscopic assembly of two-dimensional materials into a laminar structure has received considerable attention because it improves both the mechanical and chemical properties of the original materials. However, conventional manufacturing methods have certain limitations in that they require a high temperature process, use toxic solvents, and are considerably time consuming. Here, we present a new system for the self-assembly of layer-by-layer (LBL) graphene oxide (GO) via an electrohydrodynamic (EHD) jet printing technique. During printing, the orientation of GO flakes can be controlled by the velocity distribution of liquid jet and electric field-induced alignment spontaneously. Closely-packed GO patterns with an ordered laminar structure can be rapidly realized using an interfacial assembly process on the substrates. The surface roughness and electrical conductivity of the LBL structure were significantly improved compared with conventional dispensing methods. We further applied this technique to fabricate a reduced graphene oxide (r-GO)-based supercapacitor and a three-dimensional (3D) metallic grid hybrid ammonia sensor. We present the EHD-assisted assembly of laminar r-GO structures as a new platform for preparing high-performance energy storage devices and sensors.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2867
Author(s):  
Myoung Jun Park ◽  
Grace M. Nisola ◽  
Dong Han Seo ◽  
Chen Wang ◽  
Sherub Phuntsho ◽  
...  

Graphene oxide (GO) nanosheets were utilized as a selective layer on a highly porous polyvinyl alcohol (PVA) nanofiber support via a pressure-assisted self-assembly technique to synthesize composite nanofiltration membranes. The GO layer was rendered stable by cross-linking the nanosheets (GO-to-GO) and by linking them onto the support surface (GO-to-PVA) using glutaraldehyde (GA). The amounts of GO and GA deposited on the PVA substrate were varied to determine the optimum nanofiltration membrane both in terms of water flux and salt rejection performances. The successful GA cross-linking of GO interlayers and GO-PVA via acetalization was confirmed by FTIR and XPS analyses, which corroborated with other characterization results from contact angle and zeta potential measurements. Morphologies of the most effective membrane (CGOPVA-50) featured a defect-free GA cross-linked GO layer with a thickness of ~67 nm. The best solute rejections of the CGOPVA-50 membrane were 91.01% for Na2SO4 (20 mM), 98.12% for Eosin Y (10 mg/L), 76.92% for Methylene blue (10 mg/L), and 49.62% for NaCl (20 mM). These findings may provide one of the promising approaches in synthesizing mechanically stable GO-based thin-film composite membranes that are effective for solute separation via nanofiltration.


2020 ◽  
Vol 21 (20) ◽  
pp. 7577
Author(s):  
Noriyuki Uchida ◽  
Takahiro Muraoka

Peptide-based fibrous supramolecular assemblies represent an emerging class of biomaterials that can realize various bioactivities and structures. Recently, a variety of peptide fibers with attractive functions have been designed together with the discovery of many peptide-based self-assembly units. Cross-linking of the peptide fibers is a key strategy to improve the functions of these materials. The cross-linking of peptide fibers forming three-dimensional networks in a dispersion can lead to changes in physical and chemical properties. Hydrogelation is a typical change caused by cross-linking, which makes it applicable to biomaterials such as cell scaffold materials. Cross-linking methods, which have been conventionally developed using water-soluble covalent polymers, are also useful in supramolecular peptide fibers. In the case of peptide fibers, unique cross-linking strategies can be designed by taking advantage of the functions of amino acids. This review focuses on the current progress in the design of cross-linked peptide fibers and their applications.


ACS Nano ◽  
2010 ◽  
Vol 4 (12) ◽  
pp. 7358-7362 ◽  
Author(s):  
Yuxi Xu ◽  
Qiong Wu ◽  
Yiqing Sun ◽  
Hua Bai ◽  
Gaoquan Shi

2018 ◽  
Vol 6 (26) ◽  
pp. 12759-12767 ◽  
Author(s):  
Guangran Xu ◽  
Rui Si ◽  
Jiayin Liu ◽  
Luyao Zhang ◽  
Xia Gong ◽  
...  

A new directed self-assembly strategy is developed to achieve 3D Pt/Pd nanocrystal superlattices with enhanced electrocatalytic performance for methanol oxidation reaction due to the enriched metallic Pt active sites by appropriate Pd alloying and surface nitrogen doping.


RSC Advances ◽  
2016 ◽  
Vol 6 (61) ◽  
pp. 56278-56286 ◽  
Author(s):  
Lei Chen ◽  
Zhang-Run Xu

A 3D nickel-doped reduced graphene oxide aerogel was prepared by one-step reduction and self-assembly, which exhibited favorable selectivity and high adsorption capacity for isolating hemoglobin.


Sign in / Sign up

Export Citation Format

Share Document