scholarly journals Experimental investigation on strength development of lime stabilized loess

RSC Advances ◽  
2019 ◽  
Vol 9 (34) ◽  
pp. 19680-19689 ◽  
Author(s):  
Liang Jia ◽  
Jian Guo ◽  
Zhidong Zhou ◽  
Yong Fu ◽  
Kai Yao

Lime stabilization has been widely used in pavement subbases and ground improvement, but the investigation of the mechanical properties and the microstructure of lime stabilized loess is still insufficient.

2010 ◽  
Vol 7 (2) ◽  
pp. 57
Author(s):  
Jamaludin Kasim ◽  
Shaikh Abdul Karim Yamani ◽  
Ahmad Firdaus Mat Hedzir ◽  
Ahmad Syafiq Badrul Hisham ◽  
Mohd Arif Fikri Mohamad Adnan

An experimental investigation was performed to evaluate the properties of cement-bonded particleboard made from Sesendok wood. The target board density was set at a standard 1200 kg m". The effect offarticle size, wood to cement ratio and the addition ofsodium silicate and aluminium silicate on the wood cement board properties has been evaluated. A change ofparticle size from 1.0 mm to 2.0 mm has a significant effect on the mechanical properties, however the physical properties deteriorate. Increasing the wood to cement ratio from 1:2.25 to 1:3 decreases the modulus ofrupture (MOR) by 11% and the addition ofsodium silicate improves valuesfurther by about 28% compared to the addition ofaluminum silicate. The modulus ofelasticity (MOE) in general increases with increasing cement content, but is not significantly affected by the addition ofsodium silicate or aluminium silicate, although the addition of their mixture (sodium silicate andaluminium silicate) consistentlyyields greater MOE values. Water absorption and thickness swelling is significantly affected by the inclusion ofadditives and better values are attained using higher wood to cement ratios.


2021 ◽  
Vol 11 (14) ◽  
pp. 6425
Author(s):  
Hidenori Takahashi ◽  
Shinya Omori ◽  
Hideyuki Asada ◽  
Hirofumi Fukawa ◽  
Yusuke Gotoh ◽  
...  

Cellulose nanofibre (CNF), a material composed of ultrafine fibres of wood cellulose fibrillated to nano-order level, is expected to be widely used because of its excellent properties. However, in the field of geotechnical engineering, almost no progress has been made in the development of techniques for using CNFs. The authors have focused on the use of CNF as an additive in cement treatment for soft ground, where cement is added to solidify the ground, because CNF can reduce the problems associated with cement-treated soil. This paper presents the results of a study on the method of mixing CNF, the strength and its variation obtained by adding CNF, and the change in permeability. CNF had the effect of mixing the cement evenly and reducing the variation in the strength of the treated soil. The CNF mixture increased the strength at the initial age but reduced the strength development in the long term. The addition of CNF also increased the flexural strength, although it hardly changed the permeability.


Author(s):  
I. Annamalai ◽  
K. Karthik ◽  
Nitheesh Kumar ◽  
S. Muthuselvan ◽  
M. Vignesh ◽  
...  

2015 ◽  
Vol 830-831 ◽  
pp. 429-432 ◽  
Author(s):  
Udaya ◽  
Peter Fernandes

The paper illustrates Carbon nanotubes reinforced pure Al (CNT/Al) composites and fly ash reinforced pure Al (FA/Al) composites produced by ball-milling and sintering. Microstructures of the fabricated composite were examined and the mechanical properties of the composites were tested and analysed. It was indicated that the CNTs and fly ash were uniformly dispersed into the Al matrix as ball-milling time increased with increase in hardness.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2903
Author(s):  
Juvenal Giogetti Nemaleu Deutou ◽  
Rodrigue Cyriaque Kaze ◽  
Elie Kamseu ◽  
Vincenzo M. Sglavo

The present project investigated the thermal stability of cold-setting refractory composites under high-temperature cycles. The proposed route dealt with the feasibility of using fillers with different particle sizes and studying their influence on the thermo-mechanical properties of refractory geopolymer composites. The volumetric shrinkage was studied with respect to particle sizes of fillers (80, 200 and 500 µm), treatment temperature (1050–1250 °C) and amount of fillers (70–85 wt.%). The results, combined with thermal analysis, indicated the efficiency of refractory-based kyanite aggregates for enhancing thermo-mechanical properties. At low temperatures, larger amounts of kyanite aggregates promoted mechanical strength development. Flexural strengths of 45, 42 and 40 MPa were obtained for geopolymer samples, respectively, at 1200 °C, made with filler particles sieved at 80, 200 and 500 µm. In addition, a sintering temperature equal to 1200 °C appeared beneficial for the promotion of densification as well as bonding between kyanite aggregates and the matrix, contributing to the reinforcement of the refractory geopolymer composites without any sign of vitrification. From the obtained properties of thermal stability, good densification and high strength, kyanite aggregates are efficient and promising candidates for the production of environmentally friendly, castable refractory composites.


Sign in / Sign up

Export Citation Format

Share Document