scholarly journals Achieving high performance poly(vinylidene fluoride) dielectric composites via in situ polymerization of polypyrrole nanoparticles on hydroxylated BaTiO3 particles

2019 ◽  
Vol 10 (35) ◽  
pp. 8224-8235 ◽  
Author(s):  
Xu Xie ◽  
Zhen-zhen He ◽  
Xiao-dong Qi ◽  
Jing-hui Yang ◽  
Yan-zhou Lei ◽  
...  

PPy@BTOH composite particles with a ‘mulberry-like’ structure are fabricated to prepare dielectric composites with excellent comprehensive dielectric properties.

2015 ◽  
Vol 727-728 ◽  
pp. 38-41
Author(s):  
Hai Tao Zhao ◽  
Rui Ping Liu ◽  
Qiao Wang ◽  
Kai Xin Yang

TiO2/PPy composite was prepared by in situ polymerization of pyrrole on TiO2 microparticles. The results show that PPy chains have ordered arrangement to some extent. The average diameter of PPy microspheres is roughly 500 nm. TiO2 microspheres obtained are anatase-type. PPy/TiO2 composite particles are similar to spheres and there is some reunite phenomenon. The tanδe value for TiO2/PPy composite is higher than PPy in the frequency range of 8.2-12.4 GHz and it has achieved a maximum of 0.57 at 11.9 GHz.


2015 ◽  
Vol 17 (19) ◽  
pp. 13082-13091 ◽  
Author(s):  
Pradip Thakur ◽  
Arpan Kool ◽  
Biswajoy Bagchi ◽  
Nur Amin Hoque ◽  
Sukhen Das ◽  
...  

Development of Ni(OH)2nanobelt modified electroactive PVDF thin films with colossal dielectric constantsviaa simplein situprocess.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2596
Author(s):  
Jie Wang ◽  
Daniel Adami ◽  
Bo Lu ◽  
Chuntai Liu ◽  
Abderrahim Maazouz ◽  
...  

An understanding of the structural evolution in micro-/nano-layer co-extrusion process is essential to fabricate high-performance multilayered products. Therefore, in this work, we reveal systematically the multiscale structural development, involving both the layer architecture and microstructure within layers of micro-/nano-layer coextruded polymer films, as well as its relationship to dielectric properties, based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)/polycarbonate (PC) system. Interestingly, layer architecture and morphology show strong dependences on the nominal layer thicknesses. Particularly, with layer thickness reduced to nanometer scale, interfacial instabilities triggered by viscoelastic differences between components emerge with the creation of micro-droplets and micro-sheets. Films show an enhanced crystallization with the formation of two-dimensional (2D) spherulites in microlayer coextruded systems and the oriented in-plane lamellae in nanolayer coextruded counterparts, where layer breakup in the thinner layers further changes the crystallization behaviors. These macro- and microscopic structures, developed from the co-extrusion process, substantially influence the dielectric properties of coextruded films. Mechanism responsible for dielectric performance is further proposed by considering these effects of multiscale structure on the dipole switching and charge hopping in the multilayered structures. This work clearly demonstrates how the multiscale structural evolution during the micro-/nano-layer coextrusion process can control the dielectric properties of multilayered products.


2015 ◽  
Vol 17 (2) ◽  
pp. 1368-1378 ◽  
Author(s):  
Pradip Thakur ◽  
Arpan Kool ◽  
Biswajoy Bagchi ◽  
Sukhen Das ◽  
Papiya Nandy

In situsynthesis of Fe2O3–Co3O4nanoparticles stabilized electroactive PVDF thin films with colossal dielectric constants.


Author(s):  
Xiangyu WANG ◽  
Shan CONG

Poly (vinylidene fluoride) (PVDF) microporous film was successfully synthesized and functionalized by poly acrylic acid (PAA) for immobilization of nanoscale zero-valent iron (NZVI). PAA was innovatively introduced onto PVDF film via in situ polymerization of acrylic acid (AA) and followed by ion exchange procedure. The as-prepared PAA/PVDF-NZVI hybrids (PPN) were characterized in terms of morphology (SEM) and surface functional groups (FTIR). FTIR spectra confirms the functionalization of PVDF film by coating of PAA within its micropores. And SEM images suggested that NZVI were well immobilized onto the surface of the support. Over the reaction course, the resultant PPN hybrids demonstrated high reactivity, excellent stability and reusability for Cr(VI) removal. Results showed that lower pH and initial concentration facilitated the removal of Cr(VI) by PPN. Compared with bare NZVI, PAA/PVDF film-immobilized NZVI resulted in a lower activation energy for Cr(VI) removal, indicating that Cr(VI) reduction process with PPN is a surfacecontrolled chemical reaction. Moreover, a two-parameter pseudo-first-order model was provided and well-described the reaction kinetics of Cr(VI) over PPN under various conditions.


2021 ◽  
pp. 095400832110440
Author(s):  
Mingyun Peng ◽  
Ke Li ◽  
Bingliang Huang ◽  
Jie Cheng

A series of three-phase composite films with different filler contents were prepared by in-situ polymerization. The composite films comprise polyimide (PI), poly (vinylidene fluoride) (PVDF), and titanium dioxide (TiO2). Compared with PI/TiO2 composite films, the PI/TiO2-PVDF composite films not only get a significant increase in dielectric constant, but also own better mechanical properties. Our results show that with the loading of 50wt% PVDF particles, the dielectric constant of PI/TiO2-PVDF composite films increased from 6.5 to 18.14 at 1 MHz and room temperature, while the tensile strength of PI/TiO2-PVDF composite films increased from 45 to 72 MPa. In addition, the films maintain a low loss tangent of about 0.02. PI/PVDF composite films were also prepared. It was found that dielectric constant of PI/PVDF composite was significantly lower than that of PI/TiO2-PVDF composite films when the loading of PVDF is 50wt%.


RSC Advances ◽  
2017 ◽  
Vol 7 (53) ◽  
pp. 33201-33207 ◽  
Author(s):  
Fang Yuan ◽  
Yi Yang ◽  
Rui Wang ◽  
Dongju Chen

A poly(vinylidene fluoride) grafted polystyrene (PVDF-g-PS) membrane was prepared by in situ polymerization methods and applied in solvent resistant nanofiltration (SRNF).


Sign in / Sign up

Export Citation Format

Share Document