scholarly journals X-ray snapshots reveal conformational influence on active site ligation during metalloprotein folding

2019 ◽  
Vol 10 (42) ◽  
pp. 9788-9800 ◽  
Author(s):  
Darren J. Hsu ◽  
Denis Leshchev ◽  
Dolev Rimmerman ◽  
Jiyun Hong ◽  
Matthew S. Kelley ◽  
...  
Keyword(s):  
X Ray ◽  

Parameters of local heme structure and overall conformation are tracked to reveal conformational influences on ligation states.

The structure of yeast phosphoglycerate mutase determined by X-ray crystallographic and amino acid sequence studies has been interpreted in terms of the chemical, kinetic and mechanistic observations made on this enzyme. There are two histidine residues at the active site, with imidazole groups almost parallel to each other and approximately 0.4 nm apart, positioned close to the 2 and 3 positions of the substrate. The simplest interpretation of the available information suggests that a ping-pong type mechanism operates in which at least one of these histidine residues participates in the phosphoryl transfer reaction. The flexible C-terminal region also plays an important role in the enzymic reaction.


2000 ◽  
Vol 78 (1) ◽  
pp. 39-50 ◽  
Author(s):  
Nicholas R Glover ◽  
Alan S Tracey

PTP1B is a cytosolic protein tyrosine phosphatase that is a regulator of the kinase activity of the insulin receptor; the two protein tyrosine phosphatases LAR and CD45 are receptor type phosphatases crucially important to cell function. LAR also is involved in regulation of the insulin receptor while CD45 is critical for T-cell activation. Although LAR and CD45 are both transmembrane phosphatases, these enzymes manifest their phosphatase activity through a catalytic cytosolic domain. We have utilized X-ray coordinates of related phosphatases (RPTPalpha and RPTPµ) and comparative protein modeling to obtain molecular models of the D1 catalytic domains of CD45 and LAR. The models were tested using established protocols and found to be comparable to low resolution X-ray structures. The structure obtained for LAR was compared with the recently reported X-ray structure. Both the CD45-D1 and LAR-D1 structures were then compared to and contrasted with PTP1B. The active site of pockets of the three enzymes were found to be very uniform in structure and charge distribution. Also, the gross surface topology around the active site was found to be somewhat similar for the 3 phosphatases. However, there were significant differences in surface topology, and, more importantly, large changes in surface charge distribution. The differences between the surface features of these enzymes provide an explanation for the selectivity of inhibition by a number of peptides.


2001 ◽  
Vol 10 (8) ◽  
pp. 1669-1676 ◽  
Author(s):  
Demetres D. Leonidas ◽  
Gayatri B. Chavali ◽  
Anwar M. Jardine ◽  
Songlin Li ◽  
Robert Shapiro ◽  
...  

2018 ◽  
Vol 46 (6) ◽  
pp. 1431-1447 ◽  
Author(s):  
Tobias Tandrup ◽  
Kristian E. H. Frandsen ◽  
Katja S. Johansen ◽  
Jean-Guy Berrin ◽  
Leila Lo Leggio

Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes discovered within the last 10 years. By degrading recalcitrant substrates oxidatively, these enzymes are major contributors to the recycling of carbon in nature and are being used in the biorefinery industry. Recently, two new families of LPMOs have been defined and structurally characterized, AA14 and AA15, sharing many of previously found structural features. However, unlike most LPMOs to date, AA14 degrades xylan in the context of complex substrates, while AA15 is particularly interesting because they expand the presence of LPMOs from the predominantly microbial to the animal kingdom. The first two neutron crystallography structures have been determined, which, together with high-resolution room temperature X-ray structures, have putatively identified oxygen species at or near the active site of LPMOs. Many recent computational and experimental studies have also investigated the mechanism of action and substrate-binding mode of LPMOs. Perhaps, the most significant recent advance is the increasing structural and biochemical evidence, suggesting that LPMOs follow different mechanistic pathways with different substrates, co-substrates and reductants, by behaving as monooxygenases or peroxygenases with molecular oxygen or hydrogen peroxide as a co-substrate, respectively.


Author(s):  
Tzu-Ping Ko ◽  
Chi-Hung Huang ◽  
Shu-Jung Lai ◽  
Yeh Chen

Undecaprenyl pyrophosphate (UPP) is an important carrier of the oligosaccharide component in peptidoglycan synthesis. Inhibition of UPP synthase (UPPS) may be an effective strategy in combating the pathogen Acinetobacter baumannii, which has evolved to be multidrug-resistant. Here, A. baumannii UPPS (AbUPPS) was cloned, expressed, purified and crystallized, and its structure was determined by X-ray diffraction. Each chain of the dimeric protein folds into a central β-sheet with several surrounding α-helices, including one at the C-terminus. In the active site, two molecules of citrate interact with the side chains of the catalytic aspartate and serine. These observations may provide a structural basis for inhibitor design against AbUPPS.


Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2418
Author(s):  
Zuo-Peng Zhang ◽  
Ze-Fa Yin ◽  
Jia-Yue Li ◽  
Zhi-Peng Wang ◽  
Qian-Jie Wu ◽  
...  

To find novel human carbonic anhydrase (hCA) inhibitors, we synthesized thirteen compounds by combining thiazolidinone with benzenesulfonamide. The result of the X-ray single-crystal diffraction experiment confirmed the configuration of this class of compounds. The enzyme inhibition assays against hCA II and IX showed desirable potency profiles, as effective as the positive controls. The docking studies revealed that compounds (2) and (7) efficiently bound in the active site cavity of hCA IX by forming sufficient interactions with active site residues. The fragment of thiazolidinone played an important role in the binding of the molecules to the active site.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1211-C1211
Author(s):  
Joseph Ng ◽  
Ronny Hughes ◽  
Michelle Morris ◽  
Leighton Coates ◽  
Matthew Blakeley ◽  
...  

Soluble inorganic pyrophosphatase (IPPase) catalyzes the hydrolysis of inorganic pyrophosphate (PPi) to form orthophosphate (Pi). The action of this enzyme shifts the overall equilibrium in favor of synthesis during a number of ATP-dependent cellular processes such as in the polymerization of nucleic acids, production of coenzymes and proteins and sulfate assimilation pathways. Two Neutron crystallographic (2.10-2.50Å) and five high-resolution X-ray (0.99Å-1.92Å) structures of the archaeal IPPase from Thermococcus thioreducens have been determined under both cryo and room temperatures. The structures determined include the recombinant IPPase bound to Mg+2, Ca+2, Br-, SO2-2 or PO4-2 involving those with non-hydrolyzed and hydrolyzed pyrophosphate complexes. All the crystallographic structures provide snapshots of the active site corresponding to different stages of the hydrolysis of inorganic pyrophosphate. As a result, a structure-based model of IPPase catalysis is devised showing the enzyme's low-energy conformations, hydration states, movements and nucleophile generation within the active site.


Sign in / Sign up

Export Citation Format

Share Document