Toward a new generation of low cost, efficient, and durable metal–air flow batteries

2019 ◽  
Vol 7 (47) ◽  
pp. 26744-26768 ◽  
Author(s):  
Wentao Yu ◽  
Wenxu Shang ◽  
Peng Tan ◽  
Bin Chen ◽  
Zhen Wu ◽  
...  

Metal–air flow batteries are promising candidates for next-generation energy storage systems because of their high performance and scale flexibility. Further development should be conducted from material to structure design and operation management.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ziqi Wang ◽  
Liubing Dong ◽  
Weiyuan Huang ◽  
Hao Jia ◽  
Qinghe Zhao ◽  
...  

AbstractOwing to the merits of low cost, high safety and environmental benignity, rechargeable aqueous Zn-based batteries (ZBs) have gained tremendous attention in recent years. Nevertheless, the poor reversibility of Zn anodes that originates from dendrite growth, surface passivation and corrosion, severely hinders the further development of ZBs. To tackle these issues, here we report a Janus separator based on a Zn-ion conductive metal–organic framework (MOF) and reduced graphene oxide (rGO), which is able to regulate uniform Zn2+ flux and electron conduction simultaneously during battery operation. Facilitated by the MOF/rGO bifunctional interlayers, the Zn anodes demonstrate stable plating/stripping behavior (over 500 h at 1 mA cm−2), high Coulombic efficiency (99.2% at 2 mA cm−2 after 100 cycles) and reduced redox barrier. Moreover, it is also found that the Zn corrosion can be effectively retarded through diminishing the potential discrepancy on Zn surface. Such a separator engineering also saliently promotes the overall performance of Zn|MnO2 full cells, which deliver nearly 100% capacity retention after 2000 cycles at 4 A g−1 and high power density over 10 kW kg−1. This work provides a feasible route to the high-performance Zn anodes for ZBs.


Author(s):  
Guixiang Wang ◽  
Haitao Zou ◽  
Xiaobo Zhu ◽  
Mei Ding ◽  
Chuankun Jia

Abstract Zinc-based redox flow batteries (ZRFBs) have been considered as ones of the most promising large-scale energy storage technologies owing to their low cost, high safety, and environmental friendliness. However, their commercial application is still hindered by a few key problems. First, the hydrogen evolution and zinc dendrite formation cause poor cycling life, of which needs to ameliorated or overcome by finding suitable anolytes. Second, the stability and energy density of catholytes are unsatisfactory due to oxidation, corrosion, and low electrolyte concentration. Meanwhile, highly catalytic electrode materials remain to be explored and the ion selectivity and cost efficiency of membrane materials demands further improvement. In this review, we summarize different types of ZRFBs according to their electrolyte environments including ZRFBs using neutral, acidic, and alkaline electrolytes, then highlight the advances of key materials including electrode and membrane materials for ZRFBs, and finally discuss the challenges and perspectives for the future development of high-performance ZRFBs.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1161 ◽  
Author(s):  
Jun Xu ◽  
Chan Chen ◽  
Zhifei Han ◽  
Yuanyuan Yang ◽  
Junsheng Li ◽  
...  

Electrochemical oxygen reduction and oxygen evolution are two key processes that limit the efficiency of important energy conversion devices such as metal–air battery and electrolysis. Perovskite oxides are receiving discernable attention as potential bifunctional oxygen electrocatalysts to replace precious metals because of their low cost, good activity, and versatility. In this review, we provide a brief summary on the fundamentals of perovskite oxygen electrocatalysts and a detailed discussion on emerging high-performance oxygen electrocatalysts based on perovskite, which include perovskite with a controlled composition, perovskite with high surface area, and perovskite composites. Challenges and outlooks in the further development of perovskite oxygen electrocatalysts are also presented.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1264-1265
Author(s):  
Yuanli Wang ◽  
Delu Liu ◽  
Jie Fu ◽  
Jian Zhu

Much attention has been devoted to develop the new generation of microalloyed steels in recent years to meet the needs of high performance and low cost for the 21st century. The new type of steels is characterized by reduced carbon content, improved cleanness and refined grain size through the phase transformations.11'21 Precipitation of the carbonitrides in the steels is also one of the keypoints for controlling mechanical properties of the steels.In the present work ultra-low carbon clean microalloyed steels, which contain 0.029∽0.047(wt)%C, 1.48∽1.54(wt)% Mn, 0.044∽0.052(wt)%Nb, 0.025∽0.044Ti(wt)%, 0.0015∽0.0020(wt)%B and 0.0045∽0.0070(wt)%N, were prepared in a vacuum induction furnace in laboratory. The contents of S and P of the steels are 0.0005(wt)% and 0.0010∽0.0024(wt)% respectively. Total amount of the impurity elements O, S, P and H in the steels is 0.0061∽0.0077%. Dominant component of the structure in both casting and as-forged samples is acicular ferrite or bainite.


2020 ◽  
Author(s):  
Haibo Zeng ◽  
Xiaoming Li ◽  
Jiaxin Chen ◽  
Dandan Yang ◽  
Xi Chen ◽  
...  

Abstract Fluorescent type nuclear battery (NB) consisting of scintillator and photovoltaic device (PVD) enables semipermanent power source for both small and large devices working under harsh circumstances without instant energy supply. In spite of the progress of device structure design, the development of scintillators with high light yield (LY) and longer emission wavelength catering to PVDs is far behind. Here, a novel Cs3Cu2I5: Mn scintillator, which exhibits an ultrahigh LY of ~ 67000 ph/MeV at an emission wavelength of 564 nm is presented, and this is the highest value at such a long wavelength based on low cost precursors. Besides, doping and intrinsic features endow Cs3Cu2I5: Mn with robust thermal stability and irradiation hardness that 71% or > 90% of the initial radioluminescence (RL) intensity can be maintained in an ultra-broad temperature range of 77 K-433 K or after a total irradiation dose of 38.7 Gy at 333 K, respectively. These superiorities allow the fabrication of an efficient and stable NB, which showed an output improvement of 337% respect to that without scintillator. Luminescence mechanisms including self-trapped exciton, energy transfer, and impact excitation are proposed for the dramatic RL improvement. It is expected that such a new and robust scintillator will open a window for the fields of NBs and radiography.


2018 ◽  
Vol 6 (28) ◽  
pp. 13908-13917 ◽  
Author(s):  
Anteneh Wodaje Bayeh ◽  
Daniel Manaye Kabtamu ◽  
Yu-Chung Chang ◽  
Guan-Cheng Chen ◽  
Hsueh-Yu Chen ◽  
...  

In this study, a simple, low-cost, and powerful titanium niobium oxidereduced graphene oxide (TiNb2O7–rGO) nanocomposite electrocatalyst was synthesized through dispersion and blending in aqueous solution followed by freeze-drying and annealing for all-vanadium redox flow batteries (VRFBs).


2020 ◽  
Author(s):  
Minami Kato ◽  
Titus Masese ◽  
Kazuki Yoshii

<b>Potassium-ion batteries have been envisioned to herald the age of low-cost and high-performance energy storage systems. However, the sparsity of viable components has dampened the progress of these energy devices. Thus, herein, we report coronene, a high-voltage cathode material that manifests a high-voltage of 4.1 V enkindled by anion (de)insertion. This work not only illuminates the broad class of polycyclic aromatic hydrocarbons as prospective cathode materials but also sets a new benchmark for the performance of future organic cathode materials.</b>


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Jilong Ye ◽  
Fan Zhang ◽  
Zhangming Shen ◽  
Shunze Cao ◽  
Tianqi Jin ◽  
...  

AbstractTo address the resource-competing issue between high sensitivity and wide working range for a stand-alone sensor, development of capacitive sensors with an adjustable gap between two electrodes has been of growing interest. While several approaches have been developed to fabricate tunable capacitive sensors, it remains challenging to achieve, simultaneously, a broad range of tunable sensitivity and working range in a single device. In this work, a 3D capacitive sensor with a seesaw-like shape is designed and fabricated by the controlled compressive buckling assembly, which leverages the mechanically tunable configuration to achieve high-precision force sensing (resolution ~5.22 nN) and unprecedented adjustment range (by ~33 times) of sensitivity. The mechanical tests under different loading conditions demonstrate the stability and reliability of capacitive sensors. Incorporation of an asymmetric seesaw-like structure design in the capacitive sensor allows the acceleration measurement with a tunable sensitivity. These results suggest simple and low-cost routes to high-performance, tunable 3D capacitive sensors, with diverse potential applications in wearable electronics and biomedical devices.


Sign in / Sign up

Export Citation Format

Share Document